Cel
"The project lies at the crossroads between three different topics in Mathematics: moduli spaces of flat connections on surfaces in Differential Geometry and Topology, the Kashiwara-Vergne problem and Drinfeld associators in Lie theory, and combinatorics of planar networks in the theory of Total Positivity.
The time is ripe to establish deep connections between these three theories. The main factors are the recent progress in the Kashiwara-Vergne theory (including the proof of the Kashiwara-Vergne conjecture by Alekseev-Meinrenken), the discovery of a link between the Horn problem on eigenvalues of sums of Hermitian matrices and planar network combinatorics, and intimate links with the Topological Quantum Field Theory shared by the three topics.
The scientific objectives of the project include answering the following questions:
1) To find a universal non-commutative volume formula for moduli of flat connections which would contain the Witten’s volume formula, the Verlinde formula, and the Moore-Nekrasov-Shatashvili formula as particular cases.
2) To show that all solutions of the Kashiwara-Vergne problem come from Drinfeld associators. If the answer is indeed positive, it will have applications to the study of the Gothendieck-Teichmüller Lie algebra grt.
3) To find a Gelfand-Zeiltin type integrable system for the symplectic group Sp(2n). This question is open since 1983.
To achieve these goals, one needs to use a multitude of techniques. Here we single out the ones developed by the author:
- Quasi-symplectic and quasi-Poisson Geometry and the theory of group valued moment maps.
- The linearization method for Poisson-Lie groups relating the additive problem z=x+y and the multiplicative problem Z=XY.
- Free Lie algebra approach to the Kashiwara-Vergne theory, including the non-commutative divergence and Jacobian cocylces.
- Non-abelian topical calculus which establishes a link between the multiplicative problem and combinatorics of planar networks."
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze matematyka matematyka czysta topologia
- nauki przyrodnicze nauki fizyczne fizyka kwantowa kwantowa teoria pola
- nauki przyrodnicze matematyka matematyka czysta algebra
- nauki przyrodnicze matematyka matematyka czysta geometria
- nauki przyrodnicze matematyka matematyka czysta matematyka dyskretna kombinatoryka
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
ERC-2013-ADG
Zobacz inne projekty w ramach tego zaproszenia
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Instytucja przyjmująca
1211 Geneve
Szwajcaria
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.