Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-16

Arithmetic of K3 Surfaces

Objectif

Luijk's research is on explicit methods in higher-dimensional arithmetic algebraic geometry, motivated by Diophantine problems. In particular, he works on K3 surfaces, which are of interest to algebraic geometers, number theorists and theoretical physicist s. In his thesis, Luijk solved two explicit open Diophantine problems. He also developed a method to bound the rank of the Neron-Severi group of a K3 surfaces. He has constructed K3 surfaces over the rationales with infinitely many rational points and Neron-Severi rank 1. This answers a question by Swinnerton-Dyer and disposes of an old challenge attributed to Mumford. Recently he has found the first known examples of K3 surfaces with trivial automorphism group.

For the project it intended to tackle four problems:
Problem 1: Give an algorithm to compute the Neron-Severi group of K3 surfaces.
Problem 2: Formulate a suitable Manin-type conjecture for K3 surfaces, linking the distribution of rational points to the Neron-Severi group. Gather theoretical and experimental evidence for this.
Problem 3: Give necessary and sufficient criteria for the failure of the Hasse principle to be accounted for by the Brauer-Manin obstruction in terms of the Neron-Severi group.
Problem 4: The homogeneous spaces for 2-descent on genus 2 curves have K3 surfaces as quotients.

Investigate the implications of our work for the arithmetic of genus 2 curves and their Shafarevich-Tate groups. At Warwick Luijk will be able to draw on the expertise of Reid in algebraic geometry, Kresch in abstract arithmetic geometry and Siksek in explicit arithmetic geometry and Diophantine equations.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP6-2005-MOBILITY-5
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinateur

UNIVERSITY OF WARWICK
Contribution de l’UE
Aucune donnée
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0