Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-16

Arithmetic of K3 Surfaces

Obiettivo

Luijk's research is on explicit methods in higher-dimensional arithmetic algebraic geometry, motivated by Diophantine problems. In particular, he works on K3 surfaces, which are of interest to algebraic geometers, number theorists and theoretical physicist s. In his thesis, Luijk solved two explicit open Diophantine problems. He also developed a method to bound the rank of the Neron-Severi group of a K3 surfaces. He has constructed K3 surfaces over the rationales with infinitely many rational points and Neron-Severi rank 1. This answers a question by Swinnerton-Dyer and disposes of an old challenge attributed to Mumford. Recently he has found the first known examples of K3 surfaces with trivial automorphism group.

For the project it intended to tackle four problems:
Problem 1: Give an algorithm to compute the Neron-Severi group of K3 surfaces.
Problem 2: Formulate a suitable Manin-type conjecture for K3 surfaces, linking the distribution of rational points to the Neron-Severi group. Gather theoretical and experimental evidence for this.
Problem 3: Give necessary and sufficient criteria for the failure of the Hasse principle to be accounted for by the Brauer-Manin obstruction in terms of the Neron-Severi group.
Problem 4: The homogeneous spaces for 2-descent on genus 2 curves have K3 surfaces as quotients.

Investigate the implications of our work for the arithmetic of genus 2 curves and their Shafarevich-Tate groups. At Warwick Luijk will be able to draw on the expertise of Reid in algebraic geometry, Kresch in abstract arithmetic geometry and Siksek in explicit arithmetic geometry and Diophantine equations.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP6-2005-MOBILITY-5
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinatore

UNIVERSITY OF WARWICK
Contributo UE
Nessun dato
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0