Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-29

Statistical inference in population genetics

Ziel

Statistical inference is of increasing importance in population genetics as large data sets permit researchers to ask more challenging questions than was feasible in the past. This has profound implications for many important fields such as the understanding of genetic diseases in humans and other species, human evolutionary history, and genetic monitoring of endangered or invasive species. Leading laboratories in this field are all in statistics departments of US and UK universities, whereas most end users of these methods are biologists by training.

The proposer is an experienced biologist with a strong background in statistics. He aims to popularise and improve currently available methods to widen their current audience. His project involves theoretical developments in Monte Carlo methodology as well as computer programming. Both aspects require some training in addition to close interaction with computational statisticians. The training objectives concern mainly the theory of Monte Carlo methods, Importance Sampling and Resembling and pseudo-likelihood based methods.

The project is aimed at widening the scope of methods of inference to a broad set of population evolutionary scenarios including divergence, admixture and variable size. Two complementary approaches will be pursued: one based of the estimation of likelihood and the other on Approximate Bayesian Computation (ABC). Likelihood based approaches will involve Importance Sampling schemes, Markov Chain Monte Carlo (including population methods) and Sampling Importance Resembling. Improvement of the efficiency of the ABC approach is expected from exploiting adaptive sampling of parameters. For both approaches, generic software will be developed to widen their appeal to a broader audience. The realization of this project will finally benefit to many population geneticists who will dispose of a versatile and simple to use software to analyse more thoroughly their molecular datasets.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP6-2005-MOBILITY-5
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

EIF - Marie Curie actions-Intra-European Fellowships

Koordinator

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDECINE
EU-Beitrag
Keine Daten
Adresse
EXHIBITION ROAD, SOUTH KENSINGTON CAMPUS
LONDON
Vereinigtes Königreich

Auf der Karte ansehen

Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0