Objectif
"We aim to create a new and powerful theory of motivic integration which incorporates Mellin transforms. The absence of motivic Mellin transforms is a major drawback of the existing theories. Classical Mellin transforms are in essence Fourier transforms on the multiplicative group of local fields. We aim to apply this theory to study new motivic Poisson summation formulas, new transfer principles, and applications of these. All of this has so far only been studied in the presence of additive characters, and remains completely open for multiplicative characters. Understanding all this at a motivic level yields a uniform understanding when the local field varies and will require an approach using non-archimedean geometry. We will open up possibilities for applications via new transfer principles and will give access to motivic Poisson formulas of other groups than the additive group. For these applications it is important that Fubini Theorems are present at the level of the motivic integrals, which we aim to develop. We will overcome the major obstacle of the totally different nature of the dual group of the multiplicative group by a proposed sequence of germs of ideas by the author. The importance of our work on motivic Fourier transforms on the additive group is already widely recognized, and this proposal will complement it by exploring the new territory of motivic multiplicative characters. A final topic is the study of the highly non-understood exponential sums modulo powers of primes, in relation with Igusa's foundational work. We will try to discover a deeper understanding of the uniform behavior of these sums when the prime number varies. These sums are linked to geometrical concepts like the log-canonical threshold, and also to Poisson summation, after the work by Igusa. We will aim to prove a highly generalized form of Igusa's conjecture on exponential sums."
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures arithmétique nombres premiers
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2013-CoG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
75794 PARIS
France
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.