Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Highly accurate Isogeometric Method

Objetivo

Partial Differential Equations (PDEs) are widely used in science and engineering simulations, often in tight connection with Computer Aided Design (CAD). The Finite Element Method (FEM) is one of the most popular technique for the discretization of PDEs. The IsoGeometric Method (IGM), proposed in 2005 by T.J.R. Hughes et al., aims at improving the interoperability between CAD and FEMs. This is achieved by adopting the CAD mathematical primitives, i.e. Splines and Non-Uniform Rational B-Splines (NURBS), both for geometry and unknown fields representation. The IGM has gained an incredible momentum especially in the engineering community. The use of high-degree, highly smooth NURBS is extremely successful and the IGM outperforms the FEM in most academic benchmarks.

However, we are far from having a satisfactory mathematical understanding of the IGM and, even more importantly, from exploiting its full potential. Until now, the IGM theory and practice have been deeply influenced by finite element analysis. For example, the IGM is implemented resorting to a FEM code design, which is very inefficient for high-degree and high-smoothness NURBS. This has made possible a fast spreading of the IGM, but also limited it to quadratic or cubic NURBS in complex simulations.

The use of higher degree IGM for real-world applications asks for new tools allowing for the efficient construction and solution of the linear system, time integration, flexible local mesh refinement, and so on. These questions need to be approached beyond the FEM framework. This is possible only on solid mathematical grounds, on a new theory of splines and NURBS able to comply with the needs of the IGM.

This project will provide the crucial knowledge and will re-design the IGM to make it a superior, highly accurate and stable methodology, having a significant impact in the field of numerical simulation of PDEs, particularly when accuracy is essential both in geometry and fields representation.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2013-CoG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-CG - ERC Consolidator Grants

Institución de acogida

UNIVERSITA DEGLI STUDI DI PAVIA
Aportación de la UE
€ 928 188,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0