Obiettivo
Partial Differential Equations (PDEs) are widely used in science and engineering simulations, often in tight connection with Computer Aided Design (CAD). The Finite Element Method (FEM) is one of the most popular technique for the discretization of PDEs. The IsoGeometric Method (IGM), proposed in 2005 by T.J.R. Hughes et al., aims at improving the interoperability between CAD and FEMs. This is achieved by adopting the CAD mathematical primitives, i.e. Splines and Non-Uniform Rational B-Splines (NURBS), both for geometry and unknown fields representation. The IGM has gained an incredible momentum especially in the engineering community. The use of high-degree, highly smooth NURBS is extremely successful and the IGM outperforms the FEM in most academic benchmarks.
However, we are far from having a satisfactory mathematical understanding of the IGM and, even more importantly, from exploiting its full potential. Until now, the IGM theory and practice have been deeply influenced by finite element analysis. For example, the IGM is implemented resorting to a FEM code design, which is very inefficient for high-degree and high-smoothness NURBS. This has made possible a fast spreading of the IGM, but also limited it to quadratic or cubic NURBS in complex simulations.
The use of higher degree IGM for real-world applications asks for new tools allowing for the efficient construction and solution of the linear system, time integration, flexible local mesh refinement, and so on. These questions need to be approached beyond the FEM framework. This is possible only on solid mathematical grounds, on a new theory of splines and NURBS able to comply with the needs of the IGM.
This project will provide the crucial knowledge and will re-design the IGM to make it a superior, highly accurate and stable methodology, having a significant impact in the field of numerical simulation of PDEs, particularly when accuracy is essential both in geometry and fields representation.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica pura analisi matematica equazioni differenziali equazioni differenziali parziali
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
ERC-2013-CoG
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Istituzione ospitante
27100 Pavia
Italia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.