Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Highly accurate Isogeometric Method

Cel

Partial Differential Equations (PDEs) are widely used in science and engineering simulations, often in tight connection with Computer Aided Design (CAD). The Finite Element Method (FEM) is one of the most popular technique for the discretization of PDEs. The IsoGeometric Method (IGM), proposed in 2005 by T.J.R. Hughes et al., aims at improving the interoperability between CAD and FEMs. This is achieved by adopting the CAD mathematical primitives, i.e. Splines and Non-Uniform Rational B-Splines (NURBS), both for geometry and unknown fields representation. The IGM has gained an incredible momentum especially in the engineering community. The use of high-degree, highly smooth NURBS is extremely successful and the IGM outperforms the FEM in most academic benchmarks.

However, we are far from having a satisfactory mathematical understanding of the IGM and, even more importantly, from exploiting its full potential. Until now, the IGM theory and practice have been deeply influenced by finite element analysis. For example, the IGM is implemented resorting to a FEM code design, which is very inefficient for high-degree and high-smoothness NURBS. This has made possible a fast spreading of the IGM, but also limited it to quadratic or cubic NURBS in complex simulations.

The use of higher degree IGM for real-world applications asks for new tools allowing for the efficient construction and solution of the linear system, time integration, flexible local mesh refinement, and so on. These questions need to be approached beyond the FEM framework. This is possible only on solid mathematical grounds, on a new theory of splines and NURBS able to comply with the needs of the IGM.

This project will provide the crucial knowledge and will re-design the IGM to make it a superior, highly accurate and stable methodology, having a significant impact in the field of numerical simulation of PDEs, particularly when accuracy is essential both in geometry and fields representation.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/pl/web/eu-vocabularies/euroscivoc.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2013-CoG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-CG - ERC Consolidator Grants

Instytucja przyjmująca

UNIVERSITA DEGLI STUDI DI PAVIA
Wkład UE
€ 928 188,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0