Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Rich, Structured and Efficient Learning of Big Bayesian Models

Ziel

As datasets grow ever larger in scale, complexity and variety, there is an increasing need for powerful machine learning and statistical techniques that are capable of learning from such data. Bayesian nonparametrics is a promising approach to data analysis that is increasingly popular in machine learning and statistics. Bayesian nonparametric models are highly flexible models with infinite-dimensional parameter spaces that can be used to directly parameterise and learn about functions, densities, conditional distributions etc, and have been successfully applied to regression, survival analysis, language modelling, time series analysis, and visual scene analysis among others. However, to successfully use Bayesian nonparametric models to analyse the high-dimensional and structured datasets now commonly encountered in the age of Big Data, we will have to overcome a number of challenges. Namely, we need to develop Bayesian nonparametric models that can learn rich representations from structured data, and we need computational methodologies that can scale effectively to the large and complex models of the future. We will ground our developments in relevant applications, particularly to natural language processing (learning distributed representations for language modelling and compositional semantics) and genetics (modelling genetic variations arising from population, genealogical and spatial structures).

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2013-CoG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-CG - ERC Consolidator Grants

Gastgebende Einrichtung

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
EU-Beitrag
€ 1 918 092,00
Adresse
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Vereinigtes Königreich

Auf der Karte ansehen

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0