Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Rich, Structured and Efficient Learning of Big Bayesian Models

Cel

As datasets grow ever larger in scale, complexity and variety, there is an increasing need for powerful machine learning and statistical techniques that are capable of learning from such data. Bayesian nonparametrics is a promising approach to data analysis that is increasingly popular in machine learning and statistics. Bayesian nonparametric models are highly flexible models with infinite-dimensional parameter spaces that can be used to directly parameterise and learn about functions, densities, conditional distributions etc, and have been successfully applied to regression, survival analysis, language modelling, time series analysis, and visual scene analysis among others. However, to successfully use Bayesian nonparametric models to analyse the high-dimensional and structured datasets now commonly encountered in the age of Big Data, we will have to overcome a number of challenges. Namely, we need to develop Bayesian nonparametric models that can learn rich representations from structured data, and we need computational methodologies that can scale effectively to the large and complex models of the future. We will ground our developments in relevant applications, particularly to natural language processing (learning distributed representations for language modelling and compositional semantics) and genetics (modelling genetic variations arising from population, genealogical and spatial structures).

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/pl/web/eu-vocabularies/euroscivoc.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

ERC-2013-CoG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-CG - ERC Consolidator Grants

Instytucja przyjmująca

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Wkład UE
€ 1 918 092,00
Adres
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Zjednoczone Królestwo

Zobacz na mapie

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych

Beneficjenci (1)

Moja broszura 0 0