Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Intelligent Automated Methods for Monitoring Agriculture with Remote Sensing

Objectif

Remote sensing images have been a significant information source for many different applications, especially for monitoring agricultural and environmental resources. Yet knowledge extraction from them is often performed by domain experts using heavily interactive computer-aided photo-interpretations due to lack of powerful automated methods. Improved spatial/spectral resolution in recent years provides details for precise monitoring, in expense of making the problem even more complicated. For monitoring agriculture in Europe, we will innovatively propose an unsupervised automated method (with limited interaction) based on advanced similarity criteria utilizing spectral/spatial characteristics and on manifold learning techniques for clustering large data sets of very-high resolution images. This will provide a fast and accurate approach for assessment of agricultural systems at the community level, which is currently done by expert image analysis. In addition, the research addressed here (novel similarity criteria harnessing different types of information and hybrid clustering), which will certainly contribute to the EU’s research excellence in remote-sensing and data mining, are expected to be advantageous for other remote-sensing applications, and also for clustering other large data sets. This will lead to interdisciplinary applications of the proposed study resulting in greater applicability beyond agricultural monitoring (which has already a broad application area encompassing whole EU, concerning about 9 million farmers and 140 million reference parcels).

The CIG will integrate Dr. Taşdemir, an early career researcher with postdoctoral experience at EC Joint Research Centre (where he received the best young scientist award) and a PhD from Rice University, USA (where he received an award for contributions to graduate life), to establish his lab at Antalya International University, for research training and attracting talented individuals in the remote-sensing.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/fr/web/eu-vocabularies/euroscivoc.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2013-CIG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinateur

ULUSLARARASI ANTALYA UNIVERSITESI
Contribution de l’UE
€ 100 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0