Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Intelligent Automated Methods for Monitoring Agriculture with Remote Sensing

Cel

Remote sensing images have been a significant information source for many different applications, especially for monitoring agricultural and environmental resources. Yet knowledge extraction from them is often performed by domain experts using heavily interactive computer-aided photo-interpretations due to lack of powerful automated methods. Improved spatial/spectral resolution in recent years provides details for precise monitoring, in expense of making the problem even more complicated. For monitoring agriculture in Europe, we will innovatively propose an unsupervised automated method (with limited interaction) based on advanced similarity criteria utilizing spectral/spatial characteristics and on manifold learning techniques for clustering large data sets of very-high resolution images. This will provide a fast and accurate approach for assessment of agricultural systems at the community level, which is currently done by expert image analysis. In addition, the research addressed here (novel similarity criteria harnessing different types of information and hybrid clustering), which will certainly contribute to the EU’s research excellence in remote-sensing and data mining, are expected to be advantageous for other remote-sensing applications, and also for clustering other large data sets. This will lead to interdisciplinary applications of the proposed study resulting in greater applicability beyond agricultural monitoring (which has already a broad application area encompassing whole EU, concerning about 9 million farmers and 140 million reference parcels).

The CIG will integrate Dr. Taşdemir, an early career researcher with postdoctoral experience at EC Joint Research Centre (where he received the best young scientist award) and a PhD from Rice University, USA (where he received an award for contributions to graduate life), to establish his lab at Antalya International University, for research training and attracting talented individuals in the remote-sensing.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: https://op.europa.eu/pl/web/eu-vocabularies/euroscivoc.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

FP7-PEOPLE-2013-CIG
Zobacz inne projekty w ramach tego zaproszenia

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

MC-CIG - Support for training and career development of researcher (CIG)

Koordynator

ULUSLARARASI ANTALYA UNIVERSITESI
Wkład UE
€ 100 000,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

Brak danych
Moja broszura 0 0