European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Integrated High-Temperature Electrolysis and Methanation for Effective Power to Gas Conversion

Obiettivo

The objective of the HELMETH project is the proof of concept of a highly efficient Power-to-Gas (P2G) technology with methane as a chemical storage and by thermally integrating high temperature electrolysis (SOEC technology) with methanation. This thermal integration balancing the exothermal and endothermal processes is an innovation with a high potential for a most energy-efficient storage solution for renewable electricity, without any practical capacity and duration limitation, since it provides SNG (Substitute Natural Gas) as a product, which is fully compatible with the existing pipeline network and storage infrastructure.
The realisation of the P2G technology as proposed within HELMETH needs several development steps and HELMETH focuses on two main technical and socio-economic objectives, which have to be met in order to show the feasibility of the technology:
• Elaboration of the conditions / scenarios for an economic feasibility of the P2G process towards methane as chemical storage, without significantly deteriorating the CO2-balance of the renewable electricity.
• Demonstration of the technical feasibility of a conversion efficiency > 85 % from renewable electricity to methane, which is superior to the efficiency for the generation of hydrogen via conventional water electrolysis.
Within HELMETH the main focus lies in the development of a complete pressurized P2G module consisting of a pressurized steam electrolyser module, which is thermally integrated with an optimized carbon dioxide methanation module. The HELMETH project will prove and demonstrate that:
• the conversion of renewable electricity into a storable hydrocarbon by high-temperature electrolysis is a feasible option,
• high temperature electrolysis and methanation can be coupled and thermally integrated towards highest conversion efficiencies by utilizing the process heat of the exothermal methanation reaction in the high temperature electrolysis process.

Invito a presentare proposte

FCH-JU-2013-1
Vedi altri progetti per questo bando

Coordinatore

KARLSRUHER INSTITUT FUER TECHNOLOGIE
Contributo UE
€ 684 680,00
Indirizzo
KAISERSTRASSE 12
76131 Karlsruhe
Germania

Mostra sulla mappa

Regione
Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Dimosthenis Trimis (Prof.)
Collegamenti
Costo totale
Nessun dato

Partecipanti (6)