Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Ordered Algebraic Structures in Game Theory

Objectif

The main goal of this project is to study ordered algebraic structures with regard to their applications in game theory. Theory of Riesz spaces, groups, and MV-algebras provide the tools necessary for modeling important aspects of mathematical games, such as economic rationality, strategic invariance, or fairness. This is already witnessed by many parts of game theory: for example, Aumann-Shapley value is a positive equivariant linear operator into the Riesz space of measures and MV-algebras model many coalition games. Our objective is to employ the methods, which were developed for solving deep algebraic and logical problems, in several important game-theoretic problems. Specifically, we will study the class of piecewise linear continuous strategic games by using the polyhedral representation of free MV-algebras and Baker-Beynon duality for unital free vector lattices, with the goal to show the existence of finitely-supported mixed strategy equilibria. We will investigate MV-algebras and their measures in order to model coalition games and their solutions. The motivation is to generalize the Danilov-Koshevoy representation of core by the convex Minkowski combination of simplices for larger classes of games. This inevitably leads to building dual representations of games based on the notion of generalized Moebius transform and the space of filters of an MV-algebra. Each facet of this project is transdisciplinary: the emphasis on algebra and order pervades all the selected game-theoretic scenaria. The presented proposal is an opportunity for the applicant to acquire new mathematical skills under the guidance of a scientist in charge - the specialist in ordered algebraic structures - and achieve thus a unique position in his own research field (game theory, many-valued logics).

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2013-IEF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IEF - Intra-European Fellowships (IEF)

Coordinateur

UNIVERSITA DEGLI STUDI DI MILANO
Contribution de l’UE
€ 241 567,60
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0