Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Ordered Algebraic Structures in Game Theory

Ziel

The main goal of this project is to study ordered algebraic structures with regard to their applications in game theory. Theory of Riesz spaces, groups, and MV-algebras provide the tools necessary for modeling important aspects of mathematical games, such as economic rationality, strategic invariance, or fairness. This is already witnessed by many parts of game theory: for example, Aumann-Shapley value is a positive equivariant linear operator into the Riesz space of measures and MV-algebras model many coalition games. Our objective is to employ the methods, which were developed for solving deep algebraic and logical problems, in several important game-theoretic problems. Specifically, we will study the class of piecewise linear continuous strategic games by using the polyhedral representation of free MV-algebras and Baker-Beynon duality for unital free vector lattices, with the goal to show the existence of finitely-supported mixed strategy equilibria. We will investigate MV-algebras and their measures in order to model coalition games and their solutions. The motivation is to generalize the Danilov-Koshevoy representation of core by the convex Minkowski combination of simplices for larger classes of games. This inevitably leads to building dual representations of games based on the notion of generalized Moebius transform and the space of filters of an MV-algebra. Each facet of this project is transdisciplinary: the emphasis on algebra and order pervades all the selected game-theoretic scenaria. The presented proposal is an opportunity for the applicant to acquire new mathematical skills under the guidance of a scientist in charge - the specialist in ordered algebraic structures - and achieve thus a unique position in his own research field (game theory, many-valued logics).

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP7-PEOPLE-2013-IEF
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MC-IEF - Intra-European Fellowships (IEF)

Koordinator

UNIVERSITA DEGLI STUDI DI MILANO
EU-Beitrag
€ 241 567,60
Adresse
Via Festa Del Perdono 7
20122 Milano
Italien

Auf der Karte ansehen

Region
Nord-Ovest Lombardia Milano
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0