Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Multiscale Numerical Methods for Inverse Problems Governed By Partial Differential Equations

Objectif

Inverse problems that are governed by partial differential equations arise in many applications in computational science and engineering. Solving these large scale problems is a real challenge to the existing numerical methods, as they are generally highly ill-posed and non-convex. These difficulties are usually handled by introducing statistical Bayesian estimation methods that promote a-priori knowledge to the problems. Such methods address the uncertainties in the inverse problems, such as the noise and unknown parameters, so that the solution of the inverse problems is meaningful and realistic. Additionally, numerically solving these large-scale problems requires highly efficient and scalable numerical methods, which are still missing or inadequate for many applications.
Multiscale and multigrid methods are extremely efficient and scalable for some applications, but there are other problems that still pose severe challenges. In this research I plan to study two problems: one is the challenging inverse wave equation, which appears in many applications such as seismic exploration of reservoirs, and medical imaging. The other problem is the rather unexplored 4D imaging of flow in porous media, used for monitoring of reservoirs, carbon sequestration among other applications. I plan to develop efficient multiscale (and multigrid) methods for some of the key ingredients of the numerical solution of these problems. Such methods may enable a scalable and efficient solution of these inverse problems. In particular, to solve the inverse wave equation, one needs to efficiently solve the Helmholtz equation, which is still considered an open question. Another example is a multiscale approach for efficiently estimating an inverse of a covariance matrix given a few measurements. This problem lies in the heart of statistical Bayesian estimation methods, and it can be addressed if one considers the structure of the covariance for the problems of interest.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2013-IOF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinateur

BEN-GURION UNIVERSITY OF THE NEGEV
Contribution de l’UE
€ 264 079,80
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (1)

Mon livret 0 0