Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Flexible Bayesian Non-Parametric Priors

Objectif

The use of Bayesian non-parametric (BNP) priors in applied statistical modeling has become increasingly popular in the last few years. From the seminal paper of Ferguson (1973, Annals of Statistics), the Dirichlet Process and its extensions have been increasingly used to address inferential problems in many fields. Examples range from variable selection in genetics to linguistics, psychology, human learning , image segmentation and applications to neurosciences. The increased interest in non-parametric Bayesian approaches to data analysis is motivated by a number of attractive inferential properties. For example, BNP priors are often used as flexible models to describe the heterogeneity of the population of interest, as they implicitly induce a clustering of the observations into homogeneous groups.
In the big data era, there is a growing need of models that can describe the main features of large and non-trivial datasets. The information held in these kind of datasets is increasingly easily available to collect through modern networks such as the Internet. This proposal wants to provide flexible priors for explaining such datasets, in particular two research lines will be developed:

1. Non-exchangeable BNP priors for modelling the heterogeneity of the data,

2. Vectors of Dependent BNP priors for modelling information pooling across units.

The successful completion of this research will provide new powerful statistics tools for the analysis of complicated phenomena. New BNP priors will be proposed as well as the application of some recent BNP priors proposed by the principal investigator (Leisen and Lijoi, 2011 Journal of Multivariate Analysis and Leisen, Lijoi and Spanò, 2013 Electronic Journal of Statistics). Specifically, applications of such priors will be developed in the fields of Economics and Genetics.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2013-CIG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinateur

UNIVERSITY OF KENT
Contribution de l’UE
€ 100 000,00
Adresse
THE REGISTRY CANTERBURY
CT2 7NZ Canterbury, Kent
Royaume-Uni

Voir sur la carte

Région
South East (England) Kent East Kent
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0