Descripción del proyecto
Un robot para dirigir agujas con precisión
Las cirugías invasivas pueden ser dolorosas y requerir largos períodos de recuperación. Y lo que es peor, la introducción incorrecta de las agujas durante las intervenciones mínimamente invasivas puede conducir a un diagnóstico erróneo o a un tratamiento ineficaz. En este sentido, el equipo del proyecto ROBOTAR, financiado por el Consejo Europeo de Investigación, planea desarrollar un revolucionario sistema robótico capaz de dirigir con precisión agujas flexibles a través de los tejidos y permitir la administración precisa de agentes en un objetivo determinado. En el proyecto se abordarán varios retos, como la falta de modelos tridimensionales que describan la forma de las agujas, el control en tiempo real de agujas flexibles mediante imágenes tridimensionales por ecografías y el seguimiento de agentes magnéticos dirigido a través de ecografías. Con sus modelos biomecánicos específicos para cada paciente y su capacidad de control en tiempo real, el equipo de ROBOTAR está preparado para transformar el futuro de la cirugía mínimamente invasiva y mejorar los resultados clínicos de los pacientes.
Objetivo
Diagnostic agents are currently injected into the body in an uncontrolled way and visualized using non-real-time imaging modalities. Delivering agents close to the organ and magnetically guiding them to the target would permit a myriad of novel diagnostic and therapeutic options, including on-site pathology and targeted drug delivery. Such an advance would truly revolutionize minimally invasive surgery (MIS). Presently MIS often involves manual percutaneous insertion of rigid needles. These needles deviate from their intended paths due to tissue deformation and physiological processes. Inaccurate needle placement may result in misdiagnosis or ineffective treatment. Thus, the goal of ROBOTAR is to design a robotic system to accurately steer flexible needles through tissue, and enable precise delivery of agents by magnetically guiding them to a designated target.
There are several challenges: 3D models describing the evolving needle shape are not available, real-time control of flexible needles using 3D ultrasound (US) images has not been demonstrated, and US-guided tracking of magnetic agents has not been attempted. These challenges will be overcome by using non-invasively (via US) acquired tissue properties to develop patient-specific biomechanical models that predict needle paths for pre-operative plans. Intra-operative control of flexible needles with actuated tips will be accomplished by integrating plans with data from US images and optical sensors. Ultrafast US tracking methods will be coupled to an electromagnetic system to robustly control the agents. A prototype will be evaluated using microrobots and clusters of nanoparticles in scenarios with realistic physiological functionalities. The knowledge gained will be applicable to a range of flexible instruments, and to an assortment of personalized treatment scenarios. This research is motivated by the existing need to further reduce invasiveness of MIS, minimize patient trauma, and improve clinical outcomes.
Ámbito científico
- medical and health sciencesclinical medicinesurgery
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- medical and health sciencesclinical medicineoncology
- medical and health sciencesbasic medicinepathology
- natural sciencesphysical sciencesacousticsultrasound
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
7522 NB Enschede
Países Bajos