Description du projet
Un robot qui dirige les aiguilles avec précision
Les interventions chirurgicales invasives peuvent être douloureuses et les temps de récupération longs. Pire encore, tout placement imprécis de l’aiguille au cours d’une intervention mini-invasive implique un risque d’erreur de diagnostic ou de traitement inefficace. Dans ce contexte, le projet ROBOTAR, financé par le Conseil européen de la recherche, entend concevoir un système robotique révolutionnaire capable de diriger avec précision des aiguilles flexibles à travers les tissus et de permettre l’administration ciblée d’agents à une cible désignée. Le projet s’attaquera à plusieurs défis, notamment l’absence de modèles 3D décrivant la forme des aiguilles, le contrôle en temps réel d’aiguilles flexibles à l’aide d’images échographiques 3D et le suivi d’agents magnétiques guidé par échographie. Grâce à ses modèles biomécaniques spécifiques au patient et à ses capacités de contrôle en temps réel, ROBOTAR est en passe de transformer l’avenir de la chirurgie mini-invasive et d’améliorer les résultats cliniques pour les patients.
Objectif
Diagnostic agents are currently injected into the body in an uncontrolled way and visualized using non-real-time imaging modalities. Delivering agents close to the organ and magnetically guiding them to the target would permit a myriad of novel diagnostic and therapeutic options, including on-site pathology and targeted drug delivery. Such an advance would truly revolutionize minimally invasive surgery (MIS). Presently MIS often involves manual percutaneous insertion of rigid needles. These needles deviate from their intended paths due to tissue deformation and physiological processes. Inaccurate needle placement may result in misdiagnosis or ineffective treatment. Thus, the goal of ROBOTAR is to design a robotic system to accurately steer flexible needles through tissue, and enable precise delivery of agents by magnetically guiding them to a designated target.
There are several challenges: 3D models describing the evolving needle shape are not available, real-time control of flexible needles using 3D ultrasound (US) images has not been demonstrated, and US-guided tracking of magnetic agents has not been attempted. These challenges will be overcome by using non-invasively (via US) acquired tissue properties to develop patient-specific biomechanical models that predict needle paths for pre-operative plans. Intra-operative control of flexible needles with actuated tips will be accomplished by integrating plans with data from US images and optical sensors. Ultrafast US tracking methods will be coupled to an electromagnetic system to robustly control the agents. A prototype will be evaluated using microrobots and clusters of nanoparticles in scenarios with realistic physiological functionalities. The knowledge gained will be applicable to a range of flexible instruments, and to an assortment of personalized treatment scenarios. This research is motivated by the existing need to further reduce invasiveness of MIS, minimize patient trauma, and improve clinical outcomes.
Champ scientifique
- medical and health sciencesclinical medicinesurgery
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- medical and health sciencesclinical medicineoncology
- medical and health sciencesbasic medicinepathology
- natural sciencesphysical sciencesacousticsultrasound
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
7522 NB Enschede
Pays-Bas