European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Radical Solutions for Hysteresis in Single-Molecule Magnets

Descripción del proyecto

Imanes de una sola molécula a temperaturas sin precedentes

Los imanes monomoleculares (IMM) son una clase de materiales compuestos por moléculas individuales que presentan un comportamiento magnético a nivel molecular. Los IMM presentan la capacidad única de la histéresis magnética, lo cual significa que pueden conservar su magnetización incluso en ausencia de un campo magnético externo. Esta propiedad hace que los IMM sean prometedores para posibles aplicaciones en dispositivos a nanoescala. El equipo del proyecto RadMag, financiado por el Consejo Europeo de Investigación, pretende crear IMM innovadores que puedan funcionar a temperaturas más elevadas combinando nuevos ligandos radicales. El éxito del proyecto podría revolucionar el campo de los IMM y allanar el camino hacia aplicaciones prácticas a temperaturas más elevadas.

Objetivo

Single-molecule magnets (SMMs) display magnetic hysteresis that is molecular in origin, and these materials have huge potential to be developed as nano-scale devices. The big challenge is to create SMMs that function without the need for liquid-helium cooling.

This project will develop new SMMs that combine the strong magnetic anisotropy of lanthanide ions with a series of novel radical ligands. Our innovative SMMs will have controllable molecular and electronic structures, which will ultimately enable hysteresis at unprecedented temperatures.

Highly unusual di- and tri-metallic Ln-SMMs are proposed in which the metals are bridged by radicals with heavy Group 15 (phosphorus-bismuth) and Group 16 (sulphur-tellurium) donor atoms. Trimetallic SMMs will also be based on hexaazatriphenylene (HAT) radicals, and dimetallic SMMs will also be based on nindigo radicals, both of which are nitrogen-donor ligands.

The SMM field is dominated by systems with diamagnetic ligands. Our radical ligands have never been used in SMM studies: their diffuse unpaired spin provides a way of switching off the quantum tunnelling mechanisms that otherwise prevent hysteresis. We will exploit the rich electrochemistry of the target ligands: heavy p-block radicals have huge spin densities on the donor atoms; HAT radicals can have up to three unpaired electrons; reduced or oxidized nindigo radicals allow access to redox-switchable SMMs. In the HAT-bridged SMMs, the use of ligands with more than one unpaired electron is unprecedented. The heavy p-block ligands are themselves are novel.

The PI’s approach to SMMs has already established new directions in lanthanide chemistry and in molecular magnetism. He now proposes a new, radical approach to SMMs with potential to re-define the state of the art, and to extend the frontiers of a vibrant multi-disciplinary field. Achieving the aims will provide a major step towards using SMMs for applications at practical temperatures.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

THE UNIVERSITY OF SUSSEX
Aportación neta de la UEn
€ 1 050 608,57
Dirección
SUSSEX HOUSE FALMER
BN1 9RH Brighton
Reino Unido

Ver en el mapa

Región
South East (England) Surrey, East and West Sussex Brighton and Hove
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 050 608,57

Beneficiarios (3)