European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Radical Solutions for Hysteresis in Single-Molecule Magnets

Descrizione del progetto

Temperature senza precedenti per i magneti a molecola singola

I magneti a molecola singola, una classe di materiali composti da singole molecole caratterizzate da un comportamento di tipo magnetico, presentano la capacità unica nota come isteresi magnetica, che consente loro di mantenere la propria magnetizzazione anche in assenza di un campo magnetico esterno. Questa proprietà rende i magneti a molecola singola particolarmente promettenti per potenziali applicazioni in dispositivi su scala nanometrica. Finanziato dal Consiglio europeo della ricerca, il progetto RadMag mira a creare magneti innovativi di questo genere che siano in grado di operare a temperature più elevate grazie alla combinazione di nuovi leganti radicali. Il successo del progetto potrebbe rivoluzionare il campo dei magneti a molecola singola, spianando la strada per applicazioni pratiche a temperature più elevate.

Obiettivo

Single-molecule magnets (SMMs) display magnetic hysteresis that is molecular in origin, and these materials have huge potential to be developed as nano-scale devices. The big challenge is to create SMMs that function without the need for liquid-helium cooling.

This project will develop new SMMs that combine the strong magnetic anisotropy of lanthanide ions with a series of novel radical ligands. Our innovative SMMs will have controllable molecular and electronic structures, which will ultimately enable hysteresis at unprecedented temperatures.

Highly unusual di- and tri-metallic Ln-SMMs are proposed in which the metals are bridged by radicals with heavy Group 15 (phosphorus-bismuth) and Group 16 (sulphur-tellurium) donor atoms. Trimetallic SMMs will also be based on hexaazatriphenylene (HAT) radicals, and dimetallic SMMs will also be based on nindigo radicals, both of which are nitrogen-donor ligands.

The SMM field is dominated by systems with diamagnetic ligands. Our radical ligands have never been used in SMM studies: their diffuse unpaired spin provides a way of switching off the quantum tunnelling mechanisms that otherwise prevent hysteresis. We will exploit the rich electrochemistry of the target ligands: heavy p-block radicals have huge spin densities on the donor atoms; HAT radicals can have up to three unpaired electrons; reduced or oxidized nindigo radicals allow access to redox-switchable SMMs. In the HAT-bridged SMMs, the use of ligands with more than one unpaired electron is unprecedented. The heavy p-block ligands are themselves are novel.

The PI’s approach to SMMs has already established new directions in lanthanide chemistry and in molecular magnetism. He now proposes a new, radical approach to SMMs with potential to re-define the state of the art, and to extend the frontiers of a vibrant multi-disciplinary field. Achieving the aims will provide a major step towards using SMMs for applications at practical temperatures.

Meccanismo di finanziamento

ERC-COG - Consolidator Grant

Istituzione ospitante

THE UNIVERSITY OF SUSSEX
Contribution nette de l'UE
€ 1 050 608,57
Indirizzo
SUSSEX HOUSE FALMER
BN1 9RH Brighton
Regno Unito

Mostra sulla mappa

Regione
South East (England) Surrey, East and West Sussex Brighton and Hove
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 1 050 608,57

Beneficiari (3)