Descrizione del progetto
Una ricerca sulle interazioni luce-vapore su scala nanometrica per far progredire i dispositivi quantistici
Il progetto LIVIN, finanziato dal CER, intende sviluppare un kit di strumenti su scala di chip per esaminare le interazioni luce-vapore su scala nanometrica, consentendo lo sviluppo di dispositivi miniaturizzati che uniscono fotonica/plasmonica e vapori atomici. Verrà approfondita l’analisi di due piattaforme principali, ognuna con caratteristiche uniche come l’alta densità ottica, il basso consumo energetico, l’accoppiamento controllato e la vera integrazione su scala chip. Queste piattaforme dovrebbero contribuire a sbloccare affascinanti applicazioni nelle transizioni atomiche, negli effetti di luce lenta e veloce, nell’ottica non lineare e nella magnetometria. La ricerca proposta promette di far progredire la nanofotonica, la plasmonica e la fisica atomica, aprendo la strada allo sviluppo di innovativi dispositivi quantistici miniaturizzati.
Obiettivo
The goal of this research is to develop a chip scale toolkit for exploring light-vapour interactions at the nanoscale. The integration of hot vapour cells with nanophotonics technology will be used for enhancing the interaction of light with vapours and for constructing miniaturized devices. Our main objectives are: I-developing an advanced and versatile platform which allows for the construction of miniaturized devices bringing together photonics/plasmonics and atomic vapours. II-exploring the science of light-vapour interactions at the nanoscale. III–exploiting the benefits and the uniqueness of our approach for mitigating challenging applications.
Two major platforms will be studied in great details. One is based on combining vapour cells with nanoscale dielectric waveguides and resonators, while the other consists of nanoscale plasmonic structures integrated with hot vapour cells. Using these platforms, plethora of physical effects will be studied and important applications will be demonstrated. Few examples include the study of atomic transitions near surfaces, weak and strong coupling between photonic and atomic resonant systems, slow and fast light effects, nonlinear optics, frequency standards and magnetometry. The proposed approach provides unique features, e.g. high optical densities, low power consumption, well-controlled coupling and small device footprint together with true chip scale integration. For example, owing to the enhanced light-vapour interaction and the small volume of the optical mode, it allows to explore few photons-few atoms interactions, with the ultimate goal of demonstrating effects in the single photon level regime.
Given the uniqueness of our approach, the successful implementation of the proposed research should provide an outstanding playground for conducting basic and applied research in the fields of nanophotonics, plasmonics and atomic physics, and will serve as a landmark for constructing novel miniaturized quantum devices.
Campo scientifico
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
91904 Jerusalem
Israele