Objectif
Quantum field theory forms the foundation of our understanding of elementary particle physics. It provides the theoretical background for the interpretation of data from collider experiments. While quantum field theory is an old subject, over the last decade new features have begun to emerge which reveal new ways to understand it. In particular an astonishing simplicity has been found at the heart of the maximally supersymmetric gauge theory in four spacetime dimensions, a close cousin of Quantum Chromodynamics (QCD), which describes the strong interactions.
My research team will use the new methods I have been developing to construct explicit results for scattering amplitudes and correlation functions. We will develop these results into general statements about the analytic behaviour of scattering amplitudes. The approach will be based on my recent work on new dualities between amplitudes and Wilson loops and on new symmetries revealing an underlying integrable structure. This research will allow us to answer key foundational questions such as the origin of Regge behaviour of scattering amplitudes in the high energy limit, and the connection to string theory in the limit of strong coupling. We will also pursue the connection to quantum groups and formulate the problem of scattering amplitudes in this language. This provide a solid mathematical underpinning to the formulation of the scattering problem in quantum field theories and allow application of techniques from the field of integrable systems to gauge theories.
An enormous effort goes into performing the calculations of scattering amplitudes needed to make precise predictions for collider experiments. New techniques to handle such calculations are much needed. We will develop new tools, such as the application of differential equation methods for loop integrals and analytic bootstrap methods for amplitudes. This research will allow us to greatly improve on existing efforts to calculate processes in QCD.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles sciences physiques physique théorique physique des particules accélérateur de particules
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles
- sciences naturelles sciences physiques physique quantique théorie quantique des champs
- sciences naturelles mathématiques mathématiques pures algèbre
- sciences naturelles sciences physiques physique théorique théorie des cordes
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-COG - Consolidator Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2014-CoG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
SO17 1BJ Southampton
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.