Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

3D Reloaded: Novel Algorithms for 3D Shape Inference and Analysis

Description du projet

De nouvelles techniques d’analyse d’images font progresser la modélisation du monde en 3D

Les algorithmes de vision par ordinateur offrent un grand potentiel pour la modélisation et la compréhension du monde visuel. Le projet 3D Reloaded, financé par le CER, entend élaborer de nouvelles techniques d’analyse d’images, en se concentrant sur la reconstruction et l’analyse de la structure 3D du monde. Les recherches porteront sur trois domaines: le développement d’algorithmes de reconstruction 3D en temps réel à l’aide de caméras couleur standard et de caméras RGB-D; la création d’algorithmes (presque) optimaux pour l’analyse des formes 3D; et la conception d’antécédents de forme (modèles décrivant la géométrie de l’objet) pour la reconstruction 3D, soit appris à partir d’échantillons de forme, soit acquis au cours du processus. Les avancées dans le domaine de la reconstruction et de l’analyse géométriques auront d’importantes implications au-delà du domaine de la vision par ordinateur.

Objectif

Despite their amazing success, we believe that computer vision algorithms have only scratched the surface of what can be done in terms of modeling and understanding our world from images. We believe that novel image analysis techniques will be a major enabler and driving force behind next-generation technologies, enhancing everyday life and opening up radically new possibilities. And we believe that the key to achieving this is to develop algorithms for reconstructing and analyzing the 3D structure of our world.

In this project, we will focus on three lines of research:

A) We will develop algorithms for 3D reconstruction from standard color cameras and from RGB-D cameras. In particular, we will promote real-time-capable direct and dense methods. In contrast to the classical two-stage approach of sparse feature-point based motion estimation and subsequent dense reconstruction, these methods optimally exploit all color information to jointly estimate dense geometry and camera motion.

B) We will develop algorithms for 3D shape analysis, including rigid and non-rigid matching, decomposition and interpretation of 3D shapes. We will focus on algorithms which are optimal or near-optimal. One of the major computational challenges lies in generalizing existing 2D shape analysis techniques to shapes in 3D and 4D (temporal evolutions of 3D shape).

C) We will develop shape priors for 3D reconstruction. These can be learned from sample shapes or acquired during the reconstruction process. For example, when reconstructing a larger office algorithms may exploit the geometric self-similarity of the scene, storing a model of a chair and its multiple instances only once rather than multiple times.

Advancing the state of the art in geometric reconstruction and geometric analysis will have a profound impact well beyond computer vision. We strongly believe that we have the necessary competence to pursue this project. Preliminary results have been well received by the community.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2014-CoG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

TECHNISCHE UNIVERSITAET MUENCHEN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 2 000 000,00
Adresse
Arcisstrasse 21
80333 Muenchen
Allemagne

Voir sur la carte

Région
Bayern Oberbayern München, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 2 000 000,00

Bénéficiaires (1)

Mon livret 0 0