Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

The Kaehler-Ricci flow and Singular Calabi-Yau manifolds

Obiettivo

Smoothing properties of the Kaehler-Ricci flow have been known and used for a long time. Attempt to run the Kaehler-Ricci flow from a degenerate initial data has been of great interest in the last decades. The bet result so far was recently obtained by Guedj and Zeriahi that were able to define the maximal flow for any initial current with zero Lelong number. This initial current will be smoothed out immediately. One example was also given showing that there might be no regularity at all in the case of Fano manifolds when starting from a current with positive Lelong number. However it is expected that the regularizing effect happens outside analytic sets. The first goal of this proposal is to prove such a regularity result.

In the last few years, Eyssidieux, Guedj and Zeriahi have shown that every Calabi-Yau variety admits a unique singular Kaehler-Ricci flat metric. Their work establishes the existence of such singular Kaehler-Ricci flat metric but it does not establish the expected asymptotic behavior near the singular points.
The main goal of my proposal is to study the asymptotic behavior and the regularity properties of these metrics/potentials near singularities. More generally, given a Kaehler-Einstein metric on a singular variety, it would be interesting to understand how we can relate the asymptotic behavior of such a metric near to the singularities of the variety.
Such a result would be of great interest also in theoretical physics. Indeed, since the seminal paper of Candelas and de la Ossa in the 90's, physicists have guessed that Calabi-Yau 3-folds with the simplest isolated singularities should admit incomplete Kaehler-Ricci flat metrics which near each singularitiy look like the conifold metric.

A related goal would be to go after the analogies by these singular Calabi-Yau problems in the singular G2 holonomy setting.

A possible strategy would be to try to develop the techniques and the ideas recently used by Lu and myself.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2014

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 183 454,80
Indirizzo
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
Regno Unito

Mostra sulla mappa

Regione
London Inner London — West Westminster
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 183 454,80
Il mio fascicolo 0 0