Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Homotopy theory of cosimplicial unstable (co-)algebras over the Steenrod algebra

Obiettivo

This research proposal is in mathematics, its content is part of algebraic topology and homotopy theory. It aims at deepening our understanding of the homotopy theory of cosimplicial unstable (co-)algebras over the Steenrod algebra and its relation to the homotopy theory of cosimplicial spaces. This is achieved by new methods developed recently by the ER (Dr. Biedermann) and coauthors and by methods from Goodwillie calculus. Specifically, there are three closely related parts/work packages:

1. Prove a general vanishing theorem of higher obstructions for realizing a map on homology as a map of spaces. The theorem is known to hold in rational homotopy and in the mod p Massey-Peterson case.

2. Find an algebraic description of the first obstruction living in Andre-Quillen cohomology (AQC) to the existence of a realization of unstable coalgebras.

3. Define natural operations on AQC of unstable coalgebras with general coefficients.

As part of the risk management we describe two further fallback projects:

4. Study the Goodwillie tower of the identity functor of simplicial unstable algebras and relate its layers to AQC.

5. Describe the algebra of homotopy operations on simplicial commutative algebras for odd primes p.

These projects are parts of a program of the ER to investigate realization problems and rigidity results associated to singular (co-)homology. A longterm goal (beyond the time frame of the fellowship) is to develop a deformation theory of unstable (co-)algebras over the Steenrod algebra and their realizing homotopy types in the mod p case.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF-EF-ST - Standard EF

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2014

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

UNIVERSITE PARIS 13
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 185 076,00
Indirizzo
AVENUE JEAN-BAPTISTE CLEMENT 99
93430 VILLETANEUSE
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Seine-Saint-Denis
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 185 076,00
Il mio fascicolo 0 0