Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Studying, Measuring and Altering Consciousness through information theory in the electrical brain

Risultati finali

Ethical Advisory Board Report. Issue 2

Report of the external Ethical Advisory Board Report as requested for the Ethical Check

Experimental results. Issue 2

T3.2 Sleep (IFADO, UMI, STA): We will explore if lucid dreaming, which is a unique consciousness model in which primary consciousness – normally present during sleep – is transferred to the secondary mode of consciousness, is associated with specific FC alterations beyond regional prefrontal changes as demonstrated recently (Voss2014). We will systematically modulate connectivity to explore if these physiological processes are causally related to lucidity and to which degree specific FC patterns (frequency bands, synchrony) contribute. Oscillatory activity and connectivity will be studied with the advanced EEG models developed in WP1, and interventional stimulation will be performed. We will monitor sleep-dependent alterations of oscillatory activity with specific relation to FC alterations depending on relaxed wakefulness, drowsiness, light sleep, deep slow wave sleep, and REM-sleep in healthy subjects. The results will provide the basis for testing causality via tCS. We will explore consciousness modulation in healthy subjects as well as in patients suffering from sleep disturbance syndromes, i.e., psychophysiological insomnia states, and narcolepsy. The results of this study will elucidate how states of consciousness can be modulated by NIBS, and whether/how pathological alterations of state changes can be counteracted [IFADO]. PCI-based experiments will be conducted on healthy sleeping subjects in order to find the optimal stimulation parameters that are effective in reducing the magnitude and the rate of occurrence of spontaneously occurring and evoked (NIBS, somatosensory, visual, auditory) cortical downstates. It will also allow testing whether tCS, by reducing bistability, may affect the level of consciousness by promoting a sleep stage transition (e.g., from sleep stage N1 to wakefulness, from dreaming to lucid dreaming). [UMI]

Ethical Requirements. Issue 1

Ethical Requirements resulting from 2nd iteration of the Ethical Screening during GA preparation.

Experimental plans. Issue 2

T3.1 Anaesthesia: (UOX, STA, IFADO, UMI): Apply the concepts/protocols employed during sleep stage N1 or dreaming to subjects who are in a state of mild sedation or during the induction of general anaesthesia (MOOAS level 3) in order to probe the capacity of tCS to (1) alter the EEG features of bistability and (2) shift the level of wakefulness. Explore the relationship of the SWAS biomarker within the information theoretic and PCI approach to consciousness state. We will gather ultra high field 7T resting state fMRI paradigms using the developed EEG metrics as end-points for titration of anaesthesia. In particular we will explore the functional thalamocortical connectivity of the sub-regions of thalamus at these EEG end-points, and identify changes in connectivity induced by tCS. Slow activity is a common feature of both sleep and anaesthesia. There is also evidence that some anaesthetics satisfy the homeostatic need for sleep (Pal2011). By using a within-subject design, we will explore the commonality of these mechanisms further by using EEG recordings of sleep prior to fMRI scanning. We will investigate the effect of tCS on the developed EEG consciousness metrics to elucidate whether the proposed brain interference methods will allow the required dose for anaesthesia-induced loss of consciousness to be reduced, thus reducing the known risks of over-anaesthesia.

Consciousness: models, metrics and intervention. Issue 1

T1.1 Neuroscience, Consciousness & Bits (UMI, all): We will review models of consciousness, the relevance of information integration, KAC, bistability, brain rhythms related with consciousness and other explanatory correlates, and study implications for artificial systems and other cognitive sciences. Guide experimental work: specify methods for consciousness characterization, from classical spectral measures to information transfer, connectivity and complex network EEG metrics; explore intrinsic bistability of cortical neurons as a final common pathway leading to a decreased capacity for information integration (indexed by PCI and other metrics) during loss of consciousness; propose how to test hypotheses by studying the effects of different types of perturbations (NIBS, PNS) on EEG recorded during different consciousness conditions; explore the possibility of calculating PCI, or of detecting signs of cortical bistability, starting from stimulation protocols such as tCS and PNS-mediated stimulation (i.e., oddballs, local-global paradigm, subject’s own name); define KAC metrics: 1) using auditory stimuli and study associated functional networks; 2) explore the existence of similar signals using NIBS 3) evaluate tACS perturbation on EEG to create an analogue of sensory ERP. Design techniques to detect the occurrence of perturbation-induced cortical downstates, including period-amplitude analysis of evoked slow waves, time-frequency decomposition and empirical mode decomposition; assess the impact of the downstate on causality at each single recording site by calculating phase-locking factor (Lachaux1999), and the impact of the downstate on causality across recording sites by calculating the phase-locking value (Palva2010). Pre-select appropriate EEG feedback loops in NIBS and guide the EEG feature search (WP2). Finally, organise the 2-3 day yearly project workshops for brainstorming and experimental design. As a final task in the project the experimental results obtained in WP3 will be interpreted and transformed into theoretical advances on consciousness understanding.

Experimental results. Issue 1

T3.2 Sleep (IFADO, UMI, STA): We will explore if lucid dreaming, which is a unique consciousness model in which primary consciousness – normally present during sleep – is transferred to the secondary mode of consciousness, is associated with specific FC alterations beyond regional prefrontal changes as demonstrated recently (Voss2014). We will systematically modulate connectivity to explore if these physiological processes are causally related to lucidity and to which degree specific FC patterns (frequency bands, synchrony) contribute. Oscillatory activity and connectivity will be studied with the advanced EEG models developed in WP1, and interventional stimulation will be performed. We will monitor sleep-dependent alterations of oscillatory activity with specific relation to FC alterations depending on relaxed wakefulness, drowsiness, light sleep, deep slow wave sleep, and REM-sleep in healthy subjects. The results will provide the basis for testing causality via tCS. We will explore consciousness modulation in healthy subjects as well as in patients suffering from sleep disturbance syndromes, i.e., psychophysiological insomnia states, and narcolepsy. The results of this study will elucidate how states of consciousness can be modulated by NIBS, and whether/how pathological alterations of state changes can be counteracted [IFADO]. PCI-based experiments will be conducted on healthy sleeping subjects in order to find the optimal stimulation parameters that are effective in reducing the magnitude and the rate of occurrence of spontaneously occurring and evoked (NIBS, somatosensory, visual, auditory) cortical downstates. It will also allow testing whether tCS, by reducing bistability, may affect the level of consciousness by promoting a sleep stage transition (e.g., from sleep stage N1 to wakefulness, from dreaming to lucid dreaming). [UMI]

Ethical implications

T4.2 Ethics (ULG, all except INS): evaluate project’s S&T socio-ethical implications. Provide open document for wide dissemination and public understanding and for policy makers. Address the impact of potential negative findings of experimental/clinical work and how clinicians and families can deal with them. Analyse next-of-kin verbal reports on how they receive differential diagnosis and NIBS results for their patient, then provide short guides of popularized content addressing to next of kin for psycho-educative purposes on M/EEG assessment and NIBS and guidelines on pragmatic criteria for the differentiation between DOCs – clinical translation of experimental findings. Create and manage a discussion forum on clinical management (pain treatment, treatment limitation) based on the clinical diagnosis delivered by M/EEG measurements and on legal competency of (potentially) recovered patients from NIBS.

Experimental plans. Issue 1

T3.1 Anaesthesia: (UOX, STA, IFADO, UMI): Apply the concepts/protocols employed during sleep stage N1 or dreaming to subjects who are in a state of mild sedation or during the induction of general anaesthesia (MOOAS level 3) in order to probe the capacity of tCS to (1) alter the EEG features of bistability and (2) shift the level of wakefulness. Explore the relationship of the SWAS biomarker within the information theoretic and PCI approach to consciousness state. We will gather ultra high field 7T resting state fMRI paradigms using the developed EEG metrics as end-points for titration of anaesthesia. In particular we will explore the functional thalamocortical connectivity of the sub-regions of thalamus at these EEG end-points, and identify changes in connectivity induced by tCS. Slow activity is a common feature of both sleep and anaesthesia. There is also evidence that some anaesthetics satisfy the homeostatic need for sleep (Pal2011). By using a within-subject design, we will explore the commonality of these mechanisms further by using EEG recordings of sleep prior to fMRI scanning. We will investigate the effect of tCS on the developed EEG consciousness metrics to elucidate whether the proposed brain interference methods will allow the required dose for anaesthesia-induced loss of consciousness to be reduced, thus reducing the known risks of over-anaesthesia.

Ethical Advisory Board

Task D4.1 Ethical Advisory Board

Experimental plans. Issue 3

T3.1 Anaesthesia: (UOX, STA, IFADO, UMI): Apply the concepts/protocols employed during sleep stage N1 or dreaming to subjects who are in a state of mild sedation or during the induction of general anaesthesia (MOOAS level 3) in order to probe the capacity of tCS to (1) alter the EEG features of bistability and (2) shift the level of wakefulness. Explore the relationship of the SWAS biomarker within the information theoretic and PCI approach to consciousness state. We will gather ultra high field 7T resting state fMRI paradigms using the developed EEG metrics as end-points for titration of anaesthesia. In particular we will explore the functional thalamocortical connectivity of the sub-regions of thalamus at these EEG end-points, and identify changes in connectivity induced by tCS. Slow activity is a common feature of both sleep and anaesthesia. There is also evidence that some anaesthetics satisfy the homeostatic need for sleep (Pal2011). By using a within-subject design, we will explore the commonality of these mechanisms further by using EEG recordings of sleep prior to fMRI scanning. We will investigate the effect of tCS on the developed EEG consciousness metrics to elucidate whether the proposed brain interference methods will allow the required dose for anaesthesia-induced loss of consciousness to be reduced, thus reducing the known risks of over-anaesthesia.

Experimental results. Issue 3

T3.2 Sleep (IFADO, UMI, STA): We will explore if lucid dreaming, which is a unique consciousness model in which primary consciousness – normally present during sleep – is transferred to the secondary mode of consciousness, is associated with specific FC alterations beyond regional prefrontal changes as demonstrated recently (Voss2014). We will systematically modulate connectivity to explore if these physiological processes are causally related to lucidity and to which degree specific FC patterns (frequency bands, synchrony) contribute. Oscillatory activity and connectivity will be studied with the advanced EEG models developed in WP1, and interventional stimulation will be performed. We will monitor sleep-dependent alterations of oscillatory activity with specific relation to FC alterations depending on relaxed wakefulness, drowsiness, light sleep, deep slow wave sleep, and REM-sleep in healthy subjects. The results will provide the basis for testing causality via tCS. We will explore consciousness modulation in healthy subjects as well as in patients suffering from sleep disturbance syndromes, i.e., psychophysiological insomnia states, and narcolepsy. The results of this study will elucidate how states of consciousness can be modulated by NIBS, and whether/how pathological alterations of state changes can be counteracted [IFADO]. PCI-based experiments will be conducted on healthy sleeping subjects in order to find the optimal stimulation parameters that are effective in reducing the magnitude and the rate of occurrence of spontaneously occurring and evoked (NIBS, somatosensory, visual, auditory) cortical downstates. It will also allow testing whether tCS, by reducing bistability, may affect the level of consciousness by promoting a sleep stage transition (e.g., from sleep stage N1 to wakefulness, from dreaming to lucid dreaming). [UMI]

Ethical Advisory Board Report. Issue 1

Report of the external Ethical Advisory Board as requested by the Ethical check

Consciousness: models, metrics and intervention. Issue 2

T1.1 Neuroscience, Consciousness & Bits (UMI, all): We will review models of consciousness, the relevance of information integration, KAC, bistability, brain rhythms related with consciousness and other explanatory correlates, and study implications for artificial systems and other cognitive sciences. Guide experimental work: specify methods for consciousness characterization, from classical spectral measures to information transfer, connectivity and complex network EEG metrics; explore intrinsic bistability of cortical neurons as a final common pathway leading to a decreased capacity for information integration (indexed by PCI and other metrics) during loss of consciousness; propose how to test hypotheses by studying the effects of different types of perturbations (NIBS, PNS) on EEG recorded during different consciousness conditions; explore the possibility of calculating PCI, or of detecting signs of cortical bistability, starting from stimulation protocols such as tCS and PNS-mediated stimulation (i.e., oddballs, local-global paradigm, subject’s own name); define KAC metrics: 1) using auditory stimuli and study associated functional networks; 2) explore the existence of similar signals using NIBS 3) evaluate tACS perturbation on EEG to create an analogue of sensory ERP. Design techniques to detect the occurrence of perturbation-induced cortical downstates, including period-amplitude analysis of evoked slow waves, time-frequency decomposition and empirical mode decomposition; assess the impact of the downstate on causality at each single recording site by calculating phase-locking factor (Lachaux1999), and the impact of the downstate on causality across recording sites by calculating the phase-locking value (Palva2010). Pre-select appropriate EEG feedback loops in NIBS and guide the EEG feature search (WP2). Finally, organise the 2-3 day yearly project workshops for brainstorming and experimental design. As a final task in the project the experimental results obtained in WP3 will be interpreted and transformed into theoretical advances on consciousness understanding.

Project database. Issue 2

T2.4 Experiment prototype integration and validation (STA, INSERM, IFADO): In the last project iteration we will integrate validated metrics with the developed close-loop techniques in a safe prototype for adaptive neuromodulation in consciousness studies and clinical applications. Visualization tools will be developed to monitor subject responses. This prototype for adaptive neuromodulation will be experimentally validated in a pilot (IFADO, all). Validation of the prototype and model predictions will be attained in the visual perception experiment. Parameters for tCS and close-loop tCS will be provided by the model and correlated with experimental results. Conclusions and requirements for the final device implementation will be delivered.

Project website and communication materials

All communication materials including brochures, corporate identity, and web site.

Pubblicazioni

The application of tDCS for the treatment of psychiatric diseases

Autori: Min-Fang Kuo, Po-See Chen, Michael A. Nitsche
Pubblicato in: International Review of Psychiatry, Numero 29/2, 2017, Pagina/e 146-167, ISSN 0954-0261
Editore: Brunner - Routledge (US)
DOI: 10.1080/09540261.2017.1286299

Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines

Autori: A. Antal, I. Alekseichuk, M. Bikson, J. Brockmöller, A.R. Brunoni, R. Chen, L.G. Cohen, G. Dowthwaite, J. Ellrich, A. Flöel, F. Fregni, M.S. George, R. Hamilton, J. Haueisen, C.S. Herrmann, F.C. Hummel, J.P. Lefaucheur, D. Liebetanz, C.K. Loo, C.D. McCaig, C. Miniussi, P.C. Miranda, V. Moliadze, M.A. Nitsche, R. Nowak, F. Padberg, A. Pascual-Leone, W. Poppendieck, A. Priori, S. Rossi, P.M. Rossi
Pubblicato in: Clinical Neurophysiology, Numero 128/9, 2017, Pagina/e 1774-1809, ISSN 1388-2457
Editore: Elsevier BV
DOI: 10.1016/j.clinph.2017.06.001

Studying and modifying brain function with non-invasive brain stimulation

Autori: Rafael Polanía, Michael A. Nitsche, Christian C. Ruff
Pubblicato in: Nature Neuroscience, Numero 21/2, 2018, Pagina/e 174-187, ISSN 1097-6256
Editore: Nature Publishing Group
DOI: 10.1038/s41593-017-0054-4

What Effect Does tDCS Have on the Brain? Basic Physiology of tDCS

Autori: Asif Jamil, Michael A. Nitsche
Pubblicato in: Current Behavioral Neuroscience Reports, Numero 4/4, 2017, Pagina/e 331-340, ISSN 2196-2979
Editore: Springer International Publishing
DOI: 10.1007/s40473-017-0134-5

Poststimulation time interval-dependent effects of motor cortex anodal tDCS on reaction-time task performance

Autori: Andrés Molero-Chamizo, José R. Alameda Bailén, Tamara Garrido Béjar, Macarena García López, Inmaculada Jaén Rodríguez, Carolina Gutiérrez Lérida, Silvia Pérez Panal, Gloria González Ángel, Laura Lemus Corchero, María J. Ruiz Vega, Michael A. Nitsche, Guadalupe N. Rivera-Urbina
Pubblicato in: Cognitive, Affective, & Behavioral Neuroscience, Numero 18/1, 2018, Pagina/e 167-175, ISSN 1530-7026
Editore: Psychonomic Society Inc.
DOI: 10.3758/s13415-018-0561-0

Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction

Autori: Fatemeh Yavari, Asif Jamil, Mohsen Mosayebi Samani, Liliane Pinto Vidor, Michael A. Nitsche
Pubblicato in: Neuroscience & Biobehavioral Reviews, Numero 85, 2018, Pagina/e 81-92, ISSN 0149-7634
Editore: Pergamon Press Ltd.
DOI: 10.1016/j.neubiorev.2017.06.015

Stratification of unresponsive patients by an independently validated index of brain complexity

Autori: Silvia Casarotto, Angela Comanducci, Mario Rosanova, Simone Sarasso, Matteo Fecchio, Martino Napolitani, Andrea Pigorini, Adenauer G. Casali, Pietro D. Trimarchi, Melanie Boly, Olivia Gosseries, Olivier Bodart, Francesco Curto, Cristina Landi, Maurizio Mariotti, Guya Devalle, Steven Laureys, Giulio Tononi, Marcello Massimini
Pubblicato in: Annals of Neurology, 2016, ISSN 1531-8249
Editore: John Wiley & Sons
DOI: 10.1002/ana.24779

Neural correlates of consciousness: progress and problems

Autori: Christof Koch, Marcello Massimini, Melanie Boly, Giulio Tononi
Pubblicato in: Nature Reviews Neuroscience, Numero 17/5, 2016, Pagina/e 307-321, ISSN 1471-003X
Editore: Nature Publishing Group
DOI: 10.1038/nrn.2016.22

Consciousness and cortical responsiveness: a within-state study during non-rapid eye movement sleep

Autori: Jaakko O. Nieminen, Olivia Gosseries, Marcello Massimini, Elyana Saad, Andrew D. Sheldon, Melanie Boly, Francesca Siclari, Bradley R. Postle, Giulio Tononi
Pubblicato in: Scientific Reports, 2016, ISSN 2045-2322
Editore: Nature Publishing Group
DOI: 10.1038/srep30932

Measures of metabolism and complexity in the brain of patients with disorders of consciousness

Autori: Olivier Bodart, Olivia Gosseries, Sarah Wannez, Aurore Thibaut, Jitka Annen, Melanie Boly, Mario Rosanova, Adenauer G. Casali, Silvia Casarotto, Giulio Tononi, Marcello Massimini, Steven Laureys
Pubblicato in: Neuroimage: Clinical, 2017, ISSN 2213-1582
Editore: Elsevier BV
DOI: 10.1016/j.nicl.2017.02.002

Brain–computer interfaces for communication and rehabilitation

Autori: Ujwal Chaudhary, Niels Birbaumer, Ander Ramos-Murguialday
Pubblicato in: Nature Reviews Neurology, Numero 12/9, 2016, Pagina/e 513-525, ISSN 1759-4758
Editore: Nature Publishing Group
DOI: 10.1038/nrneurol.2016.113

Closed-loop brain training: the science of neurofeedback

Autori: Ranganatha Sitaram, Tomas Ros, Luke Stoeckel, Sven Haller, Frank Scharnowski, Jarrod Lewis-Peacock, Nikolaus Weiskopf, Maria Laura Blefari, Mohit Rana, Ethan Oblak, Niels Birbaumer, James Sulzer
Pubblicato in: Nature Reviews Neuroscience, Numero 18/2, 2016, Pagina/e 86-100, ISSN 1471-003X
Editore: Nature Publishing Group
DOI: 10.1038/nrn.2016.164

Brain–Computer Interface–Based Communication in the Completely Locked-In State

Autori: Ujwal Chaudhary, Bin Xia, Stefano Silvoni, Leonardo G. Cohen, Niels Birbaumer
Pubblicato in: PLOS Biology, 2017, ISSN 1544-9173
Editore: Public Library of Science
DOI: 10.1371/journal.pbio.1002593

Repeated stimulation of the posterior parietal cortex in patients in minimally conscious state: A sham-controlled randomized clinical trial

Autori: Wangshan Huang, Sarah Wannez, Felipe Fregni, Xiaohua Hu, Shan Jing, Geraldine Martens, Minhui He, Haibo Di, Steven Laureys, Aurore Thibaut
Pubblicato in: Brain Stimulation, Numero 10/3, 2017, Pagina/e 718-720, ISSN 1935-861X
Editore: Elsevier BV
DOI: 10.1016/j.brs.2017.02.001

Tracking Dynamic Interactions Between Structural and Functional Connectivity: A TMS/EEG-dMRI Study

Autori: Enrico Amico, Olivier Bodart, Mario Rosanova, Olivia Gosseries, Lizette Heine, Pieter Van Mierlo, Charlotte Martial, Marcello Massimini, Daniele Marinazzo, Steven Laureys
Pubblicato in: Brain Connectivity, Numero 7/2, 2017, Pagina/e 84-97, ISSN 2158-0014
Editore: Mary Ann Liebert Inc.
DOI: 10.1089/brain.2016.0462

Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS)

Autori: Lukas Frase, Hannah Piosczyk, Sulamith Zittel, Friederike Jahn, Peter Selhausen, Lukas Krone, Bernd Feige, Florian Mainberger, Jonathan G Maier, Marion Kuhn, Stefan Klöppel, Claus Normann, Annette Sterr, Kai Spiegelhalder, Dieter Riemann, Michael A Nitsche, Christoph Nissen
Pubblicato in: Neuropsychopharmacology, Numero 41/10, 2016, Pagina/e 2577-2586, ISSN 0893-133X
Editore: Nature Publishing Group
DOI: 10.1038/npp.2016.65

Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework

Autori: Fatemeh Yavari, Michael Nitsche and Hamed Ekhtiari
Pubblicato in: Frontiers in Human Neuroscience, Numero 11:159, 2017, ISSN 1662-5161
Editore: Frontiers Research Foundation
DOI: 10.3389/fnhum.2017.00159

Single tDCS session of motor cortex in patients with disorders of consciousness: a pilot study

Autori: Géraldine Martens, Felipe Fregni, Manon Carrière, Alice Barra, Steven Laureys, Aurore Thibaut
Pubblicato in: Brain Injury, Numero 33/13-14, 2019, Pagina/e 1679-1683, ISSN 0269-9052
Editore: Taylor & Francis
DOI: 10.1080/02699052.2019.1667537

The Repetition of Behavioral Assessments in Diagnosis of Disorders of Consciousness

Autori: Wannez, Sarah; Heine, Lizette; Thonnard, Marie; Gosseries, Olivia; Laureys, Steven; Coma Science Group Collaborators
Pubblicato in: Annals of Neurology, Numero 2, 2017, ISSN 1531-8249
Editore: Wiley Online Library
DOI: 10.5281/zenodo.1194509

Propofol-induced unresponsiveness is associated with impaired feedforward connectivity in cortical hierarchy

Autori: R.D. Sanders, M.I. Banks, M. Darracq, R. Moran, J. Sleigh, O. Gosseries, V. Bonhomme, J.F. Brichant, M. Rosanova, A. Raz, G. Tononi, M. Massimini, S. Laureys, M. Boly
Pubblicato in: British Journal of Anaesthesia, Numero 121/5, 2018, Pagina/e 1084-1096, ISSN 0007-0912
Editore: Oxford University Press
DOI: 10.1016/j.bja.2018.07.006

Are There Islands of Awareness?

Autori: Tim Bayne, Anil K. Seth, Marcello Massimini
Pubblicato in: Trends in Neurosciences, Numero 43/1, 2020, Pagina/e 6-16, ISSN 0166-2236
Editore: Elsevier BV
DOI: 10.1016/j.tins.2019.11.003

The dynamic functional core network of the human brain at rest

Autori: A. Kabbara, W. EL Falou, M. Khalil, F. Wendling, M. Hassan
Pubblicato in: Scientific Reports, Numero 7/1, 2017, ISSN 2045-2322
Editore: Nature Publishing Group
DOI: 10.1038/s41598-017-03420-6

The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials

Autori: Matteo Fecchio, Andrea Pigorini, Angela Comanducci, Simone Sarasso, Silvia Casarotto, Isabella Premoli, Chiara-Camilla Derchi, Alice Mazza, Simone Russo, Federico Resta, Fabio Ferrarelli, Maurizio Mariotti, Ulf Ziemann, Marcello Massimini, Mario Rosanova
Pubblicato in: PLOS ONE, Numero 12/9, 2017, Pagina/e e0184910, ISSN 1932-6203
Editore: Public Library of Science
DOI: 10.1371/journal.pone.0184910

The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine

Autori: Michele Angelo Colombo, Martino Napolitani, Melanie Boly, Olivia Gosseries, Silvia Casarotto, Mario Rosanova, Jean-Francois Brichant, Pierre Boveroux, Steffen Rex, Steven Laureys, Marcello Massimini, Arturo Chieregato, Simone Sarasso
Pubblicato in: NeuroImage, Numero 189, 2019, Pagina/e 631-644, ISSN 1053-8119
Editore: Academic Press
DOI: 10.1016/j.neuroimage.2019.01.024

Sleep-like cortical OFF-periods disrupt causality and complexity in the brain of unresponsive wakefulness syndrome patients

Autori: M. Rosanova, M. Fecchio, S. Casarotto, S. Sarasso, A. G. Casali, A. Pigorini, A. Comanducci, F. Seregni, G. Devalle, G. Citerio, O. Bodart, M. Boly, O. Gosseries, S. Laureys, M. Massimini
Pubblicato in: Nature Communications, Numero 9/1, 2018, ISSN 2041-1723
Editore: Nature Publishing Group
DOI: 10.1038/s41467-018-06871-1

Prevalence Of Coma-Recovery Scale-Revised Signs Of Consciousness In Patients In Minimally Conscious State

Autori: Wannez, Sarah; Gosseries, Olivia; Azzolini, Deborah; Martial, Charlotte; Cassol, Helena; Aubinet, Charlène; Annen, Jitka; Martens, Géraldine; Bodart, Olivier; Heine, Lizette; Charland-Verville, Vanessa; Thibaut, Aurore; Chatelle, Camille; Vanhaudenhuyse, Audrey; Demertzi, Athena; Schnakers, Caroline; Donneau, Anne-Françoise; Laureys, Steven
Pubblicato in: Neuropsychological Rehabilitation, Numero 5, 2018, ISSN 0960-2011
Editore: Psychology Press
DOI: 10.5281/zenodo.1194504

Brain Networks Predict Metabolism, Diagnosis And Prognosis At The Bedside In Disorders Of Consciousness

Autori: Chennu, Shrivas; Annen, Jitka; Wannez, Sarah; Chatelle, Camille; Cassol, Helena; Martens, Géraldine; Schnakers, Caroline; Gosseries, Olivia; Menon, David; Laureys, Steven
Pubblicato in: Brain, Numero 6, 2017, ISSN 0006-8950
Editore: Oxford University Press
DOI: 10.5281/zenodo.1194511

An algorithmic information theory of consciousness

Autori: Giulio Ruffini
Pubblicato in: Neuroscience of Consciousness, Numero 2017/1, 2017, ISSN 2057-2107
Editore: Oxford: Oxford University Press
DOI: 10.1093/nc/nix019

Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks

Autori: Julien Modolo, Mahmoud Hassan, Fabrice Wendling, Pascal Benquet
Pubblicato in: Network Neuroscience, Numero 4/2, 2020, Pagina/e 315-337, ISSN 2472-1751
Editore: MIT Press
DOI: 10.1162/netn_a_00119

COALIA: A Computational Model of Human EEG for Consciousness Research

Autori: Siouar Bensaid, Julien Modolo, Isabelle Merlet, Fabrice Wendling, Pascal Benquet
Pubblicato in: Frontiers in Systems Neuroscience, Numero 13, 2019, ISSN 1662-5137
Editore: Frontiers Research Foundation
DOI: 10.3389/fnsys.2019.00059

A fast and general method to empirically estimate the complexity of brain responses to transcranial and intracranial stimulations

Autori: Renzo Comolatti, Andrea Pigorini, Silvia Casarotto, Matteo Fecchio, Guilherme Faria, Simone Sarasso, Mario Rosanova, Olivia Gosseries, Mélanie Boly, Olivier Bodart, Didier Ledoux, Jean-François Brichant, Lino Nobili, Steven Laureys, Giulio Tononi, Marcello Massimini, Adenauer G. Casali
Pubblicato in: Brain Stimulation, Numero 12/5, 2019, Pagina/e 1280-1289, ISSN 1935-861X
Editore: Elsevier BV
DOI: 10.1016/j.brs.2019.05.013

Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state

Autori: Aurore Thibaut, Sarah Wannez, Anne-Francoise Donneau, Camille Chatelle, Olivia Gosseries, Marie-Aurélie Bruno, Steven Laureys
Pubblicato in: Brain Injury, Numero 31/4, 2017, Pagina/e 466-474, ISSN 0269-9052
Editore: Taylor & Francis
DOI: 10.1080/02699052.2016.1274776

Assessment of needs, psychological impact and quality of life in families of patients with locked-in syndrome

Autori: Zulay Lugo, Fréderic Pellas, Veronique Blandin, Steven Laureys, Olivia Gosseries
Pubblicato in: Brain Injury, Numero 31/12, 2017, Pagina/e 1590-1596, ISSN 0269-9052
Editore: Taylor & Francis
DOI: 10.1080/02699052.2017.1347277

Investigation of Slow Wave Activity Saturation During Surgical Anesthesia Reveals a Signature of Neural Inertia in Humans

Autori: Warnaby, Catherine E.; Sleigh, Jamie W.; Hight, Darren; Jbabdi, Saad; Tracey, Irene
Pubblicato in: Anesthesiology 127(4) 645-657, Numero 12, 2017, ISSN 0003-3022
Editore: Lippincott Williams & Wilkins Ltd.
DOI: 10.5281/zenodo.1182660

Global structural integrity and effective connectivity in patients with disorders of consciousness

Autori: Olivier Bodart, Enrico Amico, Francisco Gómez, Adenauer G. Casali, Sarah Wannez, Lizette Heine, Aurore Thibaut, Jitka Annen, Melanie Boly, Silvia Casarotto, Mario Rosanova, Marcello Massimini, Steven Laureys, Olivia Gosseries
Pubblicato in: Brain Stimulation, Numero 11/2, 2018, Pagina/e 358-365, ISSN 1935-861X
Editore: Elsevier BV
DOI: 10.1016/j.brs.2017.11.006

Transcranial direct current stimulation unveils covert consciousness

Autori: Aurore Thibaut, Camille Chatelle, Audrey Vanhaudenhuyse, Géraldine Martens, Helena Cassol, Charlotte Martial, Manon Carrière, Alice Barra, Steven Laureys, Olivia Gosseries
Pubblicato in: Brain Stimulation, Numero 11/3, 2018, Pagina/e 642-644, ISSN 1935-861X
Editore: Elsevier BV
DOI: 10.1016/j.brs.2018.02.002

Functional Connectivity Substrates for tDCS Response in Minimally Conscious State Patients

Autori: Carlo Cavaliere, Marco Aiello, Carol Di Perri, Enrico Amico, Charlotte Martial, Aurore Thibaut, Steven Laureys, Andrea Soddu
Pubblicato in: Frontiers in Cellular Neuroscience, Numero 10, 2016, ISSN 1662-5102
Editore: Frontiers Research Foundation
DOI: 10.3389/fncel.2016.00257

Electroencephalographic slow wave dynamics and loss of behavioural responsiveness induced by ketamine in human volunteers

Autori: Jamie Sleigh, Rebecca M. Pullon, Phillip E. Vlisides, Catherine E. Warnaby
Pubblicato in: British Journal of Anaesthesia, Numero 123/5, 2019, Pagina/e 592-600, ISSN 0007-0912
Editore: Oxford University Press
DOI: 10.1016/j.bja.2019.07.021

Probing the circuits of conscious perception with magnetophosphenes

Autori: Julien Modolo, Mahmoud Hassan, Giulio Ruffini, Alexandre Legros
Pubblicato in: Journal of Neural Engineering, 2019, ISSN 1741-2560
Editore: Institute of Physics Publishing
DOI: 10.1088/1741-2552/ab97f7

General anaesthesia as fragmentation of selfhood: insights from electroencephalography and neuroimaging

Autori: J. Sleigh, C. Warnaby, I. Tracey
Pubblicato in: British Journal of Anaesthesia, Numero 121/1, 2018, Pagina/e 233-240, ISSN 0007-0912
Editore: Oxford University Press
DOI: 10.1016/j.bja.2017.12.038

Semantic and BCI-performance in completely paralyzed patients: Possibility of language attrition in completely locked in syndrome

Autori: Majid Khalili Ardali, Aygul Rana, Mehdi Purmohammad, Niels Birbaumer, Ujwal Chaudhary
Pubblicato in: Brain and Language, Numero 194, 2019, Pagina/e 93-97, ISSN 0093-934X
Editore: Academic Press
DOI: 10.1016/j.bandl.2019.05.004

Sleep in the completely locked-in state (CLIS) in amyotrophic lateral sclerosis

Autori: Azim Malekshahi, Ujwal Chaudhary, Andres Jaramillo-Gonzalez, Alberto Lucas Luna, Aygul Rana, Alessandro Tonin, Niels Birbaumer, Steffen Gais
Pubblicato in: Sleep, Numero 42/12, 2019, ISSN 0161-8105
Editore: The American Academy of Sleep Medicine
DOI: 10.1093/sleep/zsz185

Electroencephalography of completely locked-in state patients with amyotrophic lateral sclerosis

Autori: Yasuhisa Maruyama, Natsue Yoshimura, Aygul Rana, Azim Malekshahi, Alessandro Tonin, Andres Jaramillo-Gonzalez, Niels Birbaumer, Ujwal Chaudhary
Pubblicato in: Neuroscience Research, 2020, ISSN 0168-0102
Editore: Elsevier BV
DOI: 10.1016/j.neures.2020.01.013

Neuropsychological and neurophysiological aspects of brain‐computer‐interface (BCI)‐control in paralysis

Autori: Ujwal Chaudhary, Natalie Mrachacz‐Kersting, Niels Birbaumer
Pubblicato in: The Journal of Physiology, 2020, ISSN 0022-3751
Editore: Blackwell Publishing Inc.
DOI: 10.1113/jp278775

Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification

Autori: Jayro Martínez-Cerveró, Majid Khalili Ardali, Andres Jaramillo-Gonzalez, Shizhe Wu, Alessandro Tonin, Niels Birbaumer, Ujwal Chaudhary
Pubblicato in: Sensors, Numero 20/9, 2020, Pagina/e 2443, ISSN 1424-8220
Editore: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/s20092443

Auditory Electrooculogram-based Communication System for ALS Patients in Transition from Locked-in to Complete Locked-in State

Autori: Alessandro Tonin, Andres Jaramillo-Gonzalez, Aygul Rana, Majid Khalili-Ardali, Niels Birbaumer, Ujwal Chaudhary
Pubblicato in: Scientific Reports, Numero 10/1, 2020, ISSN 2045-2322
Editore: Nature Publishing Group
DOI: 10.1038/s41598-020-65333-1

Fully Automated R-peak Detection Algorithm (FLORA) for fetal magnetoencephalographic data

Autori: Katrin Sippel, Julia Moser, Franziska Schleger, Hubert Preissl, Wolfgang Rosenstiel, Martin Spüler
Pubblicato in: Computer Methods and Programs in Biomedicine, Numero 173, 2019, Pagina/e 35-41, ISSN 0169-2607
Editore: Elsevier BV
DOI: 10.1016/j.cmpb.2019.02.016

Evaluating Complexity of Fetal MEG Signals: A Comparison of Different Metrics and Their Applicability

Autori: Julia Moser, Siouar Bensaid, Eleni Kroupi, Franziska Schleger, Fabrice Wendling, Giulio Ruffini, Hubert Preißl
Pubblicato in: Frontiers in Systems Neuroscience, Numero 13, 2019, ISSN 1662-5137
Editore: Frontiers Research Foundation
DOI: 10.3389/fnsys.2019.00023

A 20-Questions-Based Binary Spelling Interface for Communication Systems

Autori: Alessandro Tonin, Niels Birbaumer, Ujwal Chaudhary
Pubblicato in: Brain Sciences, Numero 8/7, 2018, Pagina/e 126, ISSN 2076-3425
Editore: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/brainsci8070126

Brain, Behavior, and Cognitive Interplay in Disorders of Consciousness: A Multiple Case Study

Autori: Charlène Aubinet, Lesley Murphy, Mohamed A. Bahri, Stephen K. Larroque, Helena Cassol, Jitka Annen, Manon Carrière, Sarah Wannez, Aurore Thibaut, Steven Laureys, Olivia Gosseries
Pubblicato in: Frontiers in Neurology, Numero 9, 2018, ISSN 1664-2295
Editore: Frontiers Research Foundation
DOI: 10.3389/fneur.2018.00665

Decreased integration of EEG source-space networks in disorders of consciousness

Autori: Jennifer Rizkallah, Jitka Annen, Julien Modolo, Olivia Gosseries, Pascal Benquet, Sepehr Mortaheb, Hassan Amoud, Helena Cassol, Ahmad Mheich, Aurore Thibaut, Camille Chatelle, Mahmoud Hassan, Rajanikant Panda, Fabrice Wendling, Steven Laureys
Pubblicato in: NeuroImage: Clinical, Numero 23, 2019, Pagina/e 101841, ISSN 2213-1582
Editore: Elsevier BV
DOI: 10.1016/j.nicl.2019.101841

Human consciousness is supported by dynamic complex patterns of brain signal coordination

Autori: A. Demertzi, E. Tagliazucchi, S. Dehaene, G. Deco, P. Barttfeld, F. Raimondo, C. Martial, D. Fernández-Espejo, B. Rohaut, H. U. Voss, N. D. Schiff, A. M. Owen, S. Laureys, L. Naccache, J. D. Sitt
Pubblicato in: Science Advances, Numero 5/2, 2019, Pagina/e eaat7603, ISSN 2375-2548
Editore: AAAS
DOI: 10.1126/sciadv.aat7603

Exploring the Correlation Between M/EEG Source–Space and fMRI Networks at Rest

Autori: Jennifer Rizkallah, Hassan Amoud, Matteo Fraschini, Fabrice Wendling, Mahmoud Hassan
Pubblicato in: Brain Topography, Numero 33/2, 2020, Pagina/e 151-160, ISSN 0896-0267
Editore: Kluwer Academic/Plenum Publishers
DOI: 10.1007/s10548-020-00753-w

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile