Objective
Lane-level positioning and map matching are some of the biggest challenges for navigation systems. Although vehicle telematics provide services with positioning requirements fulfilled by low-cost GNSS receivers, more complex road and driver assistance applications are increasingly been deployed, due to the growing demand. These include lane-level information as well as lane-level navigation and prioritised alerts depending on the scenario composition (traffic sign, navigation instructions, ADAS instructions). These applications need a more accurate and reliable positioning subsystem. A good example of these new requirements can be witnessed in the increasing interest in navigation at lane-level, with applications such as enhanced driver awareness, intelligent speed alert and simple lane allocation. As well as the accuracy of positioning data being a big driver, there is also a question around the adaptability of navigation systems to these applications. This depends firstly on the availability of an accurate common reference for positioning (an enhanced map) and secondly, on the level of the provided pose estimation (integrity). However, neither the current road maps nor the traditional integrity parameters seem to be well suited for these purposes. Delivering lane-level information to an in-vehicle navigation system and combining this with the opportunity for vehicles to exchange information between themselves, will give drivers the opportunity to select the optimal road lane, even in dense traffic in urban and extra-urban areas. Every driver will be able to choose the appropriate lane and will to be able to reduce the risks associate with last-moment lane-change manoeuvres. inLane proposes new generation, low-cost, lane-level, precise turn-by-turn navigation applications through the fusion of EGNSS and Computer Vision technology. This will enable a new generation of enhanced mapping information based on crowdsourcing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering vehicle engineering automotive engineering autonomous vehicles
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences earth and related environmental sciences physical geography cartography
- natural sciences computer and information sciences artificial intelligence computer vision
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications mobile phones
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-Galileo-GSA-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20009 Donostia San Sebastian
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.