Ziel
STREAMLINE will address the competitive advantage needs of European online media businesses (EOMB) by delivering fast reactive analytics suitable in solving a wide array of problems, including addressing customer retention, personalised recommendation, and more broadly targeted services. STREAMLINE will develop cross-sectorial analytics drawing on multi-source data originating from online media consumption, online games, telecommunications services, and multilingual web content.
STREAMLINE partners face big and fast data challenges. They serve over 100 million users, offer services that produce billions of events, yielding over 10 TB of data daily, and possess over a PB of data at rest. Their business use-cases are representative of EOMB, which cannot be handled efficiently & effectively by state-of-the-art technologies, as a consequence of system and human latencies.
System latency issues arise due to the lack of appropriate (data) stream-oriented analytics tools and more importantly the added complexity, cost, and burden associated with jointly supporting analytics for both “data at rest” and “data in motion.” Human latency results from the heterogeneity of existing tools and the low level programming languages required for development using an inordinate number of boilerplate codes that are system specific (e.g. Hadoop, SolR, Esper, Storm, and databases) and a plethora of scripts required to glue systems together.
Our research and innovation actions, include addressing the challenges brought on by system and human latencies. In this regard, STREAMLINE will:
1. Develop a high level declarative language and user-interface, and corresponding automatic optimisation, parallelisation, and system adaptation technologies that reduce the programming expertise required by data scientists, thereby enabling them to more freely focus on domain specific matters.
2. Overcome the complexity of the so-called ‘lambda architecture’ by delivering simplified operations that jointly support “data at rest” and “data in motion” in a single system and is compatible with the Hadoop ecosystem.
3. Develop fast reactive machine learning technologies based on distributed parameter servers and fully distributed asynchronous and approximate algorithms for fast results at high input rates.
The impact of developing a European open source tool for analysing “data at rest” and “data in motion” in a single system featuring a high level declarative language and a fast reactive machine learning library is much wider than just the recommender, ad targeting, and customer retention applications that the industrial partners in STREAMLINE will use to demonstrate the business value of our work for the data economy. Our open source tools will help Europe, in general, since they lower the big data analytics skills barrier, broaden the reach of data analytics tools, and are applicable to diverse market sectors, including healthcare, manufacturing, and transportation. Thereby, enabling a broad number of European SMEs in other markets to explore and integrate these technologies into their businesses. At the same time, STREAMLINE will provide a solid foundation for big data leadership in Europe, by providing an open-source platform ready to be used by millions of stakeholders in companies, households, and government.
The STREAMLINE consortium comprises world-renowned scientists and innovators in the areas of database systems (DFKI), distributed systems (SICS), and machine learning (SZTAKI) who have won many international awards, hold 18 patents collectively, and have founded and advised nine startups. Complementing the research excellence are four leading European enterprises in the data economy, in the areas of global telecommunication services (e.g. Internet, IPTV, mobile, and landline networks) (PT), games and entertainment (Rovio), media content streaming (NMusic), and web-scale data extraction and business analytics (IMR), with P
etab
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.
- Naturwissenschaften Informatik und Informationswissenschaften Datenwissenschaften Big Data
- Sozialwissenschaften Wirtschaftswissenschaften
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
RIA - Research and Innovation action
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-ICT-2015
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
501 15 Boras
Schweden
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.