Objetivo
We will develop further the theory of motivic integration. This will be done in collaboration with Prof. F. Loeser (Ecole Normale Superieure, Paris). The aim is to develop a theory of motivic integration for exponential sums and exponential integrals, which will roughly be a universal way of calculating families of (parameterised) sums of complex numbers. This will be of immediate use for the Langlands programme, since one can prove the fundamental lemma in the form of the conjecture of Jacquet-Ye over the p-adic numbers for p big enough using this theory.
It will also be of use for cryptography and theoretical physics since counting points and calculating sums are crucial tools in cryptography and since alternative theories of integration gain more and more interest by physicists. Such a theory of motivic exponential sums is completely absent and will be central in number theory, algebraic geometry and model theory. It fits into the objectives of the programme since this theory combines several discipline s of mathematics and is applicable in other domains such as cryptography and physics.
Also, the stay at the top-level place Ecole Normale Superieure will widen my researchers' career prospects and will widen my researcher's experience and expertise to great extend. Moreover, this project will promote excellence in European research, since I have proven to be a high-impact researcher with high-impact publications and international collaborations, who has given invited talks at top-universities such as Oxford -University and the Fields Institute and during top-conferences. To build such a theory is within reach in this project, because of previous work by Cluckers and Loeser on (parameterised) motivic integration and because of the world-leading expertise of bot h Cluckers and Loeser in this domain.
Ámbito científico (EuroSciVoc)
- ciencias naturales matemáticas matemáticas puras matemáticas discretas lógica matemática
- ciencias naturales informática y ciencias de la información seguridad informática criptografía
- ciencias naturales matemáticas matemáticas puras aritmética
- ciencias naturales matemáticas matemáticas puras álgebra geometría algebraica
- ciencias naturales ciencias físicas física teórica
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
FP6-2002-MOBILITY-5
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Coordinador
PARIS CEDEX 05
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.