Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Geometry of Metric groups

Objective

What are the best trajectories to park a truck with several trailers?
How fast can a lattice grow? These are some of the questions studied in this project because both the infinitesimal control structure of movement of a truck and the asymptotic geometry of a (nilpotent) lattice are examples of metric groups: Lie groups with homogeneous distances.

The PI plans to study geometric properties of metric groups and their implications to control systems and nilpotent groups. In particular, the plan is to exploit the relation between the regularity of distinguished curves, sets, and maps in subRiemannian groups, volume asymptotics in nilpotent groups, and embedding results.
The general goal is to develop an adapted geometric measure theory.

SubRiemannian spaces, and in particular Carnot groups, appear in various areas of mathematics, such as control theory, harmonic and complex analysis, asymptotic geometry, subelliptic PDE's and geometric group theory. The results in this project will provide more links between such areas.

The PI has developed a net of high-level international collaborations and obtained several results via a combination of analysis on metric spaces (differentiation of Lipschitz maps, tangents of measures, and Gromov-Hausdorff limits) and the theory of locally compact groups (Lie group techniques and the solutions of the Hilbert 5th problem). This allowed the PI to solve a number of open problems in the field, such as the analogue of Myers-Steenrod theorem on the smoothness of isometries, the analogue of Nash isometric embedding and the non-minimality of curves with corners.
Some of the next aims are to establish an analogue of the De Giorgi's rectifiability result for finite-perimeter sets and prove the smoothness of geodesics, a 30-year-old open problem.
The goal of this project is to tackle them, together with many more related questions.

The PI received his first degree at SNS Pisa (advisor: M.Abate) and his PhD from Yale University (advisor: B.Kleiner). Before obtaining a permanent position only three years after graduation, he was at ETH, Orsay, and MSRI. He received the prestigious position of research fellow of the Academy of Finland.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2016-STG

See all projects funded under this call

Host institution

UNIVERSITE DE FRIBOURG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 550 326,19
Address
AVENUE DE L EUROPE 20
1700 FRIBOURG
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Espace Mittelland Fribourg / Freiburg
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 550 326,19

Beneficiaries (3)

My booklet 0 0