Objetivo
What are the best trajectories to park a truck with several trailers?
How fast can a lattice grow? These are some of the questions studied in this project because both the infinitesimal control structure of movement of a truck and the asymptotic geometry of a (nilpotent) lattice are examples of metric groups: Lie groups with homogeneous distances.
The PI plans to study geometric properties of metric groups and their implications to control systems and nilpotent groups. In particular, the plan is to exploit the relation between the regularity of distinguished curves, sets, and maps in subRiemannian groups, volume asymptotics in nilpotent groups, and embedding results.
The general goal is to develop an adapted geometric measure theory.
SubRiemannian spaces, and in particular Carnot groups, appear in various areas of mathematics, such as control theory, harmonic and complex analysis, asymptotic geometry, subelliptic PDE's and geometric group theory. The results in this project will provide more links between such areas.
The PI has developed a net of high-level international collaborations and obtained several results via a combination of analysis on metric spaces (differentiation of Lipschitz maps, tangents of measures, and Gromov-Hausdorff limits) and the theory of locally compact groups (Lie group techniques and the solutions of the Hilbert 5th problem). This allowed the PI to solve a number of open problems in the field, such as the analogue of Myers-Steenrod theorem on the smoothness of isometries, the analogue of Nash isometric embedding and the non-minimality of curves with corners.
Some of the next aims are to establish an analogue of the De Giorgi's rectifiability result for finite-perimeter sets and prove the smoothness of geodesics, a 30-year-old open problem.
The goal of this project is to tackle them, together with many more related questions.
The PI received his first degree at SNS Pisa (advisor: M.Abate) and his PhD from Yale University (advisor: B.Kleiner). Before obtaining a permanent position only three years after graduation, he was at ETH, Orsay, and MSRI. He received the prestigious position of research fellow of the Academy of Finland.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras geometría
- ciencias naturales matemáticas matemáticas puras análisis matemático análisis complejo
- ciencias naturales matemáticas matemáticas puras análisis matemático ecuaciones diferenciales ecuaciones diferenciales parciales
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2016-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
1700 FRIBOURG
Suiza
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.