Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Geometry of Metric groups

Cel

What are the best trajectories to park a truck with several trailers?
How fast can a lattice grow? These are some of the questions studied in this project because both the infinitesimal control structure of movement of a truck and the asymptotic geometry of a (nilpotent) lattice are examples of metric groups: Lie groups with homogeneous distances.

The PI plans to study geometric properties of metric groups and their implications to control systems and nilpotent groups. In particular, the plan is to exploit the relation between the regularity of distinguished curves, sets, and maps in subRiemannian groups, volume asymptotics in nilpotent groups, and embedding results.
The general goal is to develop an adapted geometric measure theory.

SubRiemannian spaces, and in particular Carnot groups, appear in various areas of mathematics, such as control theory, harmonic and complex analysis, asymptotic geometry, subelliptic PDE's and geometric group theory. The results in this project will provide more links between such areas.

The PI has developed a net of high-level international collaborations and obtained several results via a combination of analysis on metric spaces (differentiation of Lipschitz maps, tangents of measures, and Gromov-Hausdorff limits) and the theory of locally compact groups (Lie group techniques and the solutions of the Hilbert 5th problem). This allowed the PI to solve a number of open problems in the field, such as the analogue of Myers-Steenrod theorem on the smoothness of isometries, the analogue of Nash isometric embedding and the non-minimality of curves with corners.
Some of the next aims are to establish an analogue of the De Giorgi's rectifiability result for finite-perimeter sets and prove the smoothness of geodesics, a 30-year-old open problem.
The goal of this project is to tackle them, together with many more related questions.

The PI received his first degree at SNS Pisa (advisor: M.Abate) and his PhD from Yale University (advisor: B.Kleiner). Before obtaining a permanent position only three years after graduation, he was at ETH, Orsay, and MSRI. He received the prestigious position of research fellow of the Academy of Finland.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-STG - Starting Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2016-STG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

UNIVERSITE DE FRIBOURG
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 550 326,19
Adres
AVENUE DE L EUROPE 20
1700 FRIBOURG
Szwajcaria

Zobacz na mapie

Region
Schweiz/Suisse/Svizzera Espace Mittelland Fribourg / Freiburg
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 550 326,19

Beneficjenci (3)

Moja broszura 0 0