The terahertz optical regime, covering the long wavelength end of the optical spectrum, has been for many years the least explored spectral regime. Recent interest in this regime has led to important emerging applications spanning many disciplines including medical, biological, materials sciences, communications, security, and basic sciences. However, advances in these emerging applications are held back by the lack of good and controllable terahertz light sources. This project is aimed at developing a new family of THz sources with unmatched functionality. The developed sources are based on nano-engineered nonlinear heterostructured metamaterials, man-made materials with artificial optical properties. In the project we work to study and design novel active metamaterials that efficiently emit THz light at broad range of frequencies, designed shapes and desired polarization, focus it directly from the emitter to a desired sample location and even actively steer and modify its radiation properties all-optically. Overall the aim of this research is to develop a unique family of THz light emitters that will lead to the, long sought for, leap in THz technology and will open the door to new applications and to new tools for advancing fundamental science.