Project description
Shedding light on the dance between genes and form
In the intricate web of animal evolution, the key to understanding the transformation of body plans and organ shapes lies in deciphering the changes within developmental programmes. These programmes control the expression of crucial genes and their extensive downstream networks, which drive the evolution of animal morphology. However, a definitive proof of this hypothesis has remained elusive, leaving a significant gap in our understanding. In this context, the ERC-funded Evoland project will revolutionise our comprehension of animal evolution. By harnessing the power of next-generation sequencing-based tools, Evoland aims to unravel the mysteries hidden within the regulatory elements controlling gene expression. These regulatory regions, known as cis-regulatory elements, have long remained a puzzle due to their complex organisation within the three-dimensional genome.
Objective
Evolution of animal morphology relies on changes in developmental programs that control body plans and organ shape. Such changes are thought to arise form alteration of the expression of functionally conserved developmental genes and their vast downstream networks. Although this hypothesis has a profound impact on the way we view animal evolution, final proof is still lacking. The hypothesis calls for evolution to take place mainly through modifications of cis-regulatory elements (CREs) controlling gene expression. However, these genomic regions are precisely those that we understand the least and, until recently, basic knowledge on how regulatory information is organized in the 3D genome or how to spatio-temporally assign CREs to their target genes was unknown.
The advent of next generation sequencing-based tools has made possible to identify genome-wide CREs and reveal how they are organized in the 3D genome. But this new knowledge has been largely ignored by most hypotheses on the evolution of gene expression, development and animal morphology. These new high-throughput methods have been mainly restricted to selected model organisms, and due to the lack of sequence conservation of CREs across lineages, we still have very limited information about the impact of CREs on animal morphology evolution.
By integrating in a systematic and phylogenetically driven manner the contribution of CREs and their 3D organization to animal morphology at different evolutionary scales, we will for the first time link evolution, regulatory information, genome 3D architecture and morphology. We will apply this strategy to study animal morphology along the evolution of deuterostome body plans, the generation of fin morphological diversity in vertebrates, and the recent phenotypic changes in fish adapted to cave environments.
Our proposal will make ground-breaking advances in our understanding of the global principles underlying the evolution of cis-regulatory DNA and animal form.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2016-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.