Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Growth in Groups and Graph Isomorphism Now

Objectif

"In recent years there has been spectacular progress in studying growth in groups. A central result in this new area, obtained by Pyber-Szabo' (with a similar result proved by Breuillard-Green-Tao), shows that powers of generating subsets of finite simple groups of ""bounded dimension"" grow fast. Extending this Product Theorem Szabo' and the PI also proved a weaker version of a conjecture of Helfgott-Lindenstrauss. The Product Theorem has deep consequences in the study of groups, number theory and random walks. A central open question of the area is to remove the dependence on dimension in our Product Theorem. The PI formulated a new Conjecture, as a step forward. The way to further progress is via combining techniques from asymptotic group theory and probability theory. It is from this perspective that the current GROGandGIN proposal addresses issues concerning random walks. We examine how recent probabilistic arguments for random walks in the symmetric group may be transferred to matrix groups. While the first results in the subject of growth concern matrix groups we see an evolving theory of growth in permutation groups. This relies on earlier work of Babai and the PI which aims at finding proofs which do not use the Classification of Finite Simple Groups (CFSG). Similarly, Babai's famous Quasipolynomial Graph Isomorphism Algorithm builds on ideas from CFSG-free proofs due to him. The PI has recently removed CFSG from the analysis of Babai's algorithm. Our method goes ""halfway"" towards removing CFSG from proofs of growth results for permutation groups, currently a major open problem. The GROGandGIN initiative plans to improve various other parts of Babai's paper, working with several people who look at it from different angles, with an eye towards obtaining a Polynomial Graph Isomorphism algorithm. The GROGandGIN team will also study growth in Lie groups since the theory of random walks in Lie groups has been revitalised using analogues of our Product Theorem."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-ADG - Advanced Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2016-ADG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

HUN-REN RENYI ALFRED MATEMATIKAI KUTATOINTEZET
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 965 340,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 965 340,00

Bénéficiaires (1)

Mon livret 0 0