Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Seasonal Prediction of Fire danger using Statistical and Dynamical models

Obiettivo

Wildfires have a great impact on the environment and can pose a threat to property and human lives and health. The occurrence of fire in natural vegetation is dependent on human activities and climate variability. In tropical areas such as the Amazon basin and Indonesia, wildfires are greatly affected by inter-annual fluctuations in tropical Sea Surface Temperatures (SSTs). During the El Niño events of 1997-1998 and 2015-2016, uncontrolled wildfires caused record impacts on health, transportation and the economy. The European countries of the Mediterranean basin are frequently plagued by drought episodes (e.g. during the summer of 2016), causing dangerous wildfires which result in deaths, health problems and economic losses.

Seasonal climate prediction is a field which typically forecasts seasonal average precipitation and temperature anomalies with a few months lead time. The main sources of predictability are SSTs, soil moisture, snow cover and teleconnections with the tropics. Seasonal climate predictions are performed operationally in Europe and globally, and are used in fields such as agriculture, health, water management and energy. While some effort has been put into short-term forecasts of fire danger in Europe, there is currently no operational seasonal wildfire forecasting system for Europe and only a few for other continents. The goal of this project is to develop and assess seasonal fire prediction capability through a variety of complementary and innovative methods, with a focus on Europe, the Amazonian basin and Indonesia.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MSCA-IF-EF-ST - Standard EF

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) H2020-MSCA-IF-2016

Vedi tutti i progetti finanziati nell’ambito del bando

Coordinatore

BARCELONA SUPERCOMPUTING CENTER CENTRO NACIONAL DE SUPERCOMPUTACION
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 170 121,60
Indirizzo
CALLE JORDI GIRONA 31
08034 Barcelona
Spagna

Mostra sulla mappa

Regione
Este Cataluña Barcelona
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 170 121,60
Il mio fascicolo 0 0