Obiettivo A fundamental problem in the study of dynamical systems is to ascertain whether the effect of a perturbation on an integrable Hamiltonian system accumulates over time and leads to a large effect (instability) or it averages out (stability). Instabilities in nearly integrable systems, usually called Arnold diffusion, take place along resonances and by means of aframework of partially hyperbolic invariant objects and their homoclinic and heteroclinic connections.The goal of this project is to develop new techniques, relying on the role of invariant manifolds in the global dynamics, to prove the existence of physically relevant instabilities and homoclinic phenomena in several problems in celestial mechanics and Hamiltonian Partial Differential Equations.The N body problem models the interaction of N puntual masses under gravitational force. Astronomers have deeply analyzed the role of resonances in this model. Nevertheless, mathematical results showing instabilities along them are rather scarce. I plan to develop a new theory to analyze the transversal intersection between invariant manifolds along mean motion and secular resonances to prove the existence of Arnold diffusion. I will also apply this theory to construct oscillatory motions.Several Partial Differential Equations such as the nonlinear Schrödinger, the Klein-Gordon and the wave equations can be seen as infinite dimensional Hamiltonian systems. Using dynamical systems techniques and understanding the role of invariant manifolds in these Hamiltonian PDEs, I will study two type of solutions: transfer of energy solutions, namely solutions that push energy to arbitrarily high modes as time evolves by drifting along resonances; and breathers, spatially localized and periodic in time solutions, which in a proper setting can be seen as homoclinic orbits to a stationary solution. Campo scientifico scienze naturaliscienze fisicheastronomiaplanetologiameccanica celestescienze naturalimatematicamatematica puraanalisi matematicaequazioni differenzialiequazioni differenziali parzialiscienze naturalimatematicamatematica applicata Programma(i) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Argomento(i) ERC-2017-STG - ERC Starting Grant Invito a presentare proposte ERC-2017-STG Vedi altri progetti per questo bando Meccanismo di finanziamento ERC-STG - Starting Grant Coordinatore UNIVERSITAT DE BARCELONA Contribution nette de l'UE € 227 152,32 Indirizzo Gran via de les corts catalanes 585 08007 Barcelona Spagna Mostra sulla mappa Regione Este Cataluña Barcelona Tipo di attività Higher or Secondary Education Establishments Collegamenti Contatta l’organizzazione Opens in new window Sito web Opens in new window Partecipazione a programmi di R&I dell'UE Opens in new window Rete di collaborazione HORIZON Opens in new window Altri finanziamenti € 0,00 Beneficiari (2) Classifica in ordine alfabetico Classifica per Contributo netto dell'UE Espandi tutto Riduci tutto UNIVERSITAT DE BARCELONA Spagna Contribution nette de l'UE € 227 152,32 Indirizzo Gran via de les corts catalanes 585 08007 Barcelona Mostra sulla mappa Regione Este Cataluña Barcelona Tipo di attività Higher or Secondary Education Establishments Collegamenti Contatta l’organizzazione Opens in new window Sito web Opens in new window Partecipazione a programmi di R&I dell'UE Opens in new window Rete di collaborazione HORIZON Opens in new window Altri finanziamenti € 0,00 UNIVERSITAT POLITECNICA DE CATALUNYA Partecipazione conclusa Spagna Contribution nette de l'UE € 873 195,18 Indirizzo Calle jordi girona 31 08034 Barcelona Mostra sulla mappa Regione Este Cataluña Barcelona Tipo di attività Higher or Secondary Education Establishments Collegamenti Contatta l’organizzazione Opens in new window Sito web Opens in new window Partecipazione a programmi di R&I dell'UE Opens in new window Rete di collaborazione HORIZON Opens in new window Altri finanziamenti € 0,00