Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Machine learning for Advanced Gas turbine Injection SysTems to Enhance combustoR performance.

CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.

I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .

Risultati finali

Control of a thermoacoustic system using machine learning (si apre in una nuova finestra)

Control of thermoacoustic system using machine learning

Compressible LES of liquid fuel injection using AVBP. (si apre in una nuova finestra)

Compressible LES of liquid fuel injection using AVBP

Modelling of acoustically absorbing liners. (si apre in una nuova finestra)
Demo of of combustion instability surrogate model. (si apre in una nuova finestra)

Demo of LES of unstable spray flames

Uncertainty handling in engine operation. (si apre in una nuova finestra)

Uncertainty handling in engine operation

Droplet measurements data in an atmospheric test rig. (si apre in una nuova finestra)

Droplet measurements data in an atmospheric test rig

Development of the Discontinuous Galerkin discretization in SU2: application demo LES of spray flames. (si apre in una nuova finestra)

Development of the Discontinuous Galerkin discretization in SU2 application demo LES of spray flames

Compressible LES applied to combustion liners and dilution holes. (si apre in una nuova finestra)

Compressible LES applied to combustion liners and dilution holes

Simulation data of the effect of pressure variation on spray combustion. (si apre in una nuova finestra)

Simulation data of the effect of pressure variation on spray combustion

Machine learning in thermoacoustic measurements. (si apre in una nuova finestra)

Machine learning in thermoacoustic measurements

Comparison of different machine learning algorithms. (si apre in una nuova finestra)
Application of machine learning in CFD. (si apre in una nuova finestra)
UQ of spray combustion. (si apre in una nuova finestra)

Uncertainty Quantification of spray combustion

LES demo thermoacoustic instability in helicopter engine (si apre in una nuova finestra)
Measurement data of the acoustic response of kerosene spray flames. (si apre in una nuova finestra)

Measurement data of the acoustic response of kerosene spray flames

Summer school: Thermo-acoustics and combustion dynamics in aero gas turbine engines (si apre in una nuova finestra)

Thermo-acoustics and combustion dynamics in aero gas turbine engines

Workshop C (si apre in una nuova finestra)

Entrepreneurship, ethics, intellectual property rights and management

Workshop B (si apre in una nuova finestra)

CFD for spray flame simulations

Workshop D (si apre in una nuova finestra)

Measurements of spray flames in aircraft type combustors

Overview of Outreach activities. Final press release (si apre in una nuova finestra)

Overview of Outreach activities Final press release

Symposium: Future Aero gas turbine engines Com-bustion Dynamics+Acoustics: Prediction and Remedy (si apre in una nuova finestra)

Aero gas turbine engine Combustion Dynamics and Acoustics Prediction and Remedy

Workshop A (si apre in una nuova finestra)

Machine Learning, Combustion and Acoustics in aero engine combustors

Data Management Plan (DMP) (si apre in una nuova finestra)

Mandatory deliverable as consortium decided not to opt out of the pilot on open research.

Pubblicazioni

Data Assimilation Using Heteroscedastic Bayesian Neural Network Ensembles for Reduced-Order Flame Models (si apre in una nuova finestra)

Autori: Maximilian L. Croci, Ushnish Sengupta, Matthew P. Juniper
Pubblicato in: Computational Science – ICCS 2021 - 21st International Conference, Krakow, Poland, June 16–18, 2021, Proceedings, Part V, Numero 12746, 2021, Pagina/e 408-419, ISBN 978-3-030-77976-4
Editore: Springer International Publishing
DOI: 10.1007/978-3-030-77977-1_33

Reduced order models applied to laminar diffusion flames (si apre in una nuova finestra)

Autori: Nicole Lopes M. B. Junqueira, Luís Fernando Figueira da Silva, Louise Da Costa Ramos
Pubblicato in: Procceedings of the 18th Brazilian Congress of Thermal Sciences and Engineering, 2020
Editore: ABCM
DOI: 10.26678/abcm.encit2020.cit20-0196

Real-time parameter inference in reduced-order flame models with heteroscedastic Bayesian neural network ensembles

Autori: Sengupta, Ushnish; Croci, Maximilian L.; Juniper, Matthew P.
Pubblicato in: Numero 1, 2021
Editore: Cornell University

Bayesian Machine Learning for the Prognosis of Combustion Instabilities From Noise (si apre in una nuova finestra)

Autori: Ushnish Sengupta; Carl Edward Rasmussen; Matthew P. Juniper
Pubblicato in: Numero 2, 2021
Editore: Proceedings of the ASME Turbo Expo
DOI: 10.1115/1.4049762

Confidence in Flame Impulse Response Estimation by LES with Uncertain Thermal Boundary Condition (si apre in una nuova finestra)

Autori: Kulkarni S, Guo S, Silva CF, Polifke W.
Pubblicato in: 2021
Editore: ASME Turbo Expo 2021
DOI: 10.13140/rg.2.2.25121.12642

Thermoacoustic stabilization of combustors with gradient-augmented Bayesian optimization and adjoint models

Autori: Ushnish Sengupta1 and Matthew P. Juniper1
Pubblicato in: 2021
Editore: Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC 2021)

Avoiding High-frequency Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Bayesian Deep Learning (si apre in una nuova finestra)

Autori: Sengupta, Ushnish ; Waxenegger-Wilfing, Guenther ; Martin, Jan ; Hardi, Justin ; Juniper, Matthew
Pubblicato in: Avoiding High-frequency Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Bayesian Deep Learning, 2020
Editore: Conference: American Physical Society, Division of Fluid Dynamics Meeting 2020 (APS DFD 2020)
DOI: 10.13140/rg.2.2.15452.00649

Static mesh adaptation for reliable large eddy simulation of turbulent reacting flows (si apre in una nuova finestra)

Autori: P. W. Agostinelli; B. Rochette; D. Laera; J. Dombard; B. Cuenot; L. Gicquel
Pubblicato in: Crossref, Numero 5, 2021, ISSN 1527-2435
Editore: Physics of Fluids
DOI: 10.1063/5.0040719

Fusing model ensembles and observations together with Bayesian neural networks

Autori: Amos, Matt ; Sengupta, Ushnish ; Hosking, Scott ; Young, Paul
Pubblicato in: 2021
Editore: EGU General Assembly Conference Abstracts

Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning

Autori: Ushnish Senguptaa, G ̈unther Waxenegger-Wilfingb, Jan Martinb,Justin Hardib, Matthew P. Junipera,∗
Pubblicato in: Fluid Dynamics (physics.flu-dyn); Computational Engineering, Finance, and Science (cs.CE); Machine Learning (cs.LG), 2021
Editore: Fluid Dynamics (physics.flu-dyn); Computational Engineering, Finance, and Science (cs.CE); Machine Learning (cs.LG)

Online Detection of Combustion Instabilities Using Supervised Machine Learning (si apre in una nuova finestra)

Autori: Michael McCartney, Wolfgang Polifke
Pubblicato in: Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, 2020
Editore: ASME Turbo Expo 2020
DOI: 10.1115/gt2020-14834

A model to study spontaneous oscillations in a lean premixed combustor using non-linear analysis

Autori: Sara Navarro Arredondo, Jim Kok
Pubblicato in: Proceedings of the 26th International Congress on Sound and Vibration, Numero 26, 2019, ISBN 978-1-9991810-0-0
Editore: Canadian Acoustical Association

Numerical Study Of A Swirl Atomized Spray Response To Acoustic Perturbations.

Autori: Alireza Ghasemi, J.B.W. Kok
Pubblicato in: Proceedings of the 26th International Congress on Sound and Vibration, Numero 26, 2019, ISBN 978-1-9991810-0-0
Editore: Canadian Acoustical Association

Bayesian machine learning for the prognosis of combustion instabilities from noise (si apre in una nuova finestra)

Autori: Ushnish Sengupta Carl Rasmussen Matthew Juniper
Pubblicato in: Proceedings of the ASME 2020 Turbomachinery Technical Conference Exposition, 2020
Editore: Proceedings of the ASME 2020 Turbomachinery Technical Conference Exposition
DOI: 10.31224/osf.io/ysgp4

Ensembling geophysical models with Bayesian Neural Networks (si apre in una nuova finestra)

Autori: Sengupta, Ushnish; Amos, Matt; Hosking, J. Scott; Rasmussen, Carl Edward; Juniper, Matthew; Young, Paul J.
Pubblicato in: Numero 2, 2020
Editore: Cornell University
DOI: 10.17863/cam.60032

Real-time parameter inference in reduced-order flame models with heteroscedastic Bayesian neural network ensembles

Autori: Ushnish Sengupta, Maximilian L. Croci, Matthew P. Juniper
Pubblicato in: 2020
Editore: Cornell University

Comparison of Machine Learning Algorithms in the Interpolation and Extrapolation of Flame Describing Functions (si apre in una nuova finestra)

Autori: Michael McCartney, Matthias Haeringer, Wolfgang Polifke
Pubblicato in: Volume 4B: Combustion, Fuels, and Emissions, 2019, ISBN 978-0-7918-5862-2
Editore: American Society of Mechanical Engineers
DOI: 10.1115/gt2019-91319

Numerical and Experimental Flame Stabilization Analysis in the New SpinningCombustion Technology Framework (si apre in una nuova finestra)

Autori: Agostinelli, P. W., Kwah, Y. H., Richard, S., Exilard, G., Dawson, J. R., Gicquel, L., & Poinsot, T.
Pubblicato in: 2020
Editore: In Proceedings of the ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition
DOI: 10.1115/gt2020-15035

Real-time parameter inference of nonlinear bluff-body-stabilized flame models using Bayesian neural network ensembles

Autori: Maximilian L. Croci1 2, Ushnish Sengupta1 and Matthew P. Juniper1
Pubblicato in: Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC 2021), 2021
Editore: SoTiC 2021 - Symposium on Thermoacoustics in Combustion: Industry meets Academia, 2021

Numerical design of Luenberger observers for nonlinear systems (si apre in una nuova finestra)

Autori: Louise da C. Ramos, Florent Di Meglio, Valery Morgenthaler, Luis F. Figueira da Silva, Pauline Bernard
Pubblicato in: 2020 59th IEEE Conference on Decision and Control (CDC), 2020, Pagina/e 5435-5442, ISBN 978-1-7281-7447-1
Editore: IEEE
DOI: 10.1109/cdc42340.2020.9304163

Reduced Order Models Applied to Laminar Diffusion Flames

Autori: N. L. M. B. Junqueira, L. F. Figueira da Silva, L. C. Ramos
Pubblicato in: 2020 Brazilian Congress of Thermal Sciences and Engineering, Online., 2020
Editore: 2020 Brazilian Congress of Thermal Sciences and Engineering, Online.

Reduced Order Model of Laminar Premixed Inverted Conical Flames (si apre in una nuova finestra)

Autori: Louise da Costa Ramos, Florent Di Meglio, Luis Fernando F. Da Silva, Valery Morgenthaler
Pubblicato in: AIAA Scitech 2020 Forum, 2020, ISBN 978-1-62410-595-1
Editore: American Institute of Aeronautics and Astronautics
DOI: 10.2514/6.2020-0416

Estimating Both Reflection Coefficients of 2×2 Linear Hyperbolic Systems with Single Boundary Measurement (si apre in una nuova finestra)

Autori: Nils Christian A. Wilhelmsen, Florent Di Meglio
Pubblicato in: 2020 59th IEEE Conference on Decision and Control (CDC), 2020, Pagina/e 658-665, ISBN 978-1-7281-7447-1
Editore: IEEE
DOI: 10.1109/cdc42340.2020.9304413

The influence of the learning data on the reduced order model of laminar non-premixed flames (si apre in una nuova finestra)

Autori: Nicole Lopes Junqueira Luis Fernando Figueira da Silva , Louise da Costa Ramos , Igor Braga de Paula
Pubblicato in: 26 International Congress of Mechanical Engineering, 2021
Editore: 26 International Congress of Mechanical Engineering
DOI: 10.26678/abcm.cobem2021.cob2021-0110

Assimilation of Experimental Data to Create a Quantitatively Accurate Reduced-Order Thermoacoustic Model (si apre in una nuova finestra)

Autori: Francesco Garita; Hans Yu; Matthew P. Juniper
Pubblicato in: Numero 4, 2021, ISSN 1528-8919
Editore: Journal of Engineering for Gas Turbines and Power
DOI: 10.31224/osf.io/8bmaz

Ongoing Development of Non-reflective Boundary Conditions for Euler and Navier-Stokes Equations via the Discontinuous Galerkin Framework (si apre in una nuova finestra)

Autori: Edmond Shehadi, Edwin van der Weide
Pubblicato in: AIAA Scitech 2021 Forum, 2021, ISBN 978-1-62410-609-5
Editore: American Institute of Aeronautics and Astronautics
DOI: 10.2514/6.2021-1660

ASSIMILATION OF EXPERIMENTAL DATA TO CREATE A QUANTITATIVELY-ACCURATE REDUCED ORDER THERMOACOUSTIC MODEL

Autori: Garita, F., Yu, H., & Juniper, M.
Pubblicato in: Proceedings of the ASME Turbo Expo 2020: Turbine Technical Conference and Exposition, 2020
Editore: ASME Turbo Expo 2020

Influence of Hole-to-Hole Interaction on the Acoustic Behavior of Multi-Orifice Perforated Plates (si apre in una nuova finestra)

Autori: Alireza Javareshkian, Alexis Dancelme, Hongyu Chen, Thomas Sattelmayer
Pubblicato in: 2021
Editore: Journal of Engineering for Gas Turbines and Power
DOI: 10.1115/gt2021-58535

Improved color-gradient method for lattice Boltzmann modeling of two-phase flows (si apre in una nuova finestra)

Autori: T. Lafarge; P. Boivin; N. Odier; B. Cuenot
Pubblicato in: EISSN: 1089-7666, Numero 1, 2021, ISSN 1527-2435
Editore: Physics of Fluids
DOI: 10.1063/5.0061638

Modeling of Pulsating Inverted Conical Flames: a Numerical Instability Analysis

Autori: L. C. Ramos, L. F. Figueira da Silva, F. Di Meglio, V. Morgenthaler
Pubblicato in: Combustion Theory and Modeling, 2021, ISSN 1364-7830
Editore: Institute of Physics Publishing

Influence of an Oscillating Airflow on the PrefilmingAirblast Atomization Process (si apre in una nuova finestra)

Autori: Thomas Christou Björn Stelzner Nikolaos Zarzalis
Pubblicato in: Atomization and Sprays, 2021, ISSN 1936-2684
Editore: Atomization and Sprays
DOI: 10.5445/ir/1000132623

Modeling of the nonlinear flame response of a Bunsen-type flame via multi-layer perceptron (si apre in una nuova finestra)

Autori: Nilam Tathawadekar, Nguyen Anh Khoa Doan, Camilo F. Silva, Nils Thuerey
Pubblicato in: Proceedings of the Combustion Institute, 2020, ISSN 1540-7489
Editore: Combustion Institute
DOI: 10.1016/j.proci.2020.07.115

Numerical study of multicomponent spray flame propagation (si apre in una nuova finestra)

Autori: Varun Shastry Quentin Cazeres Bastien Rochette Eleonore Riber Bénédicte Cuenot
Pubblicato in: Proceedings of the Combustion Institute, 2019, ISSN 1540-7489
Editore: Combustion Institute
DOI: 10.1016/j.proci.2020.07.090

Stabilization mechanisms of CH4 premixed swirled flame enriched with a non-premixed hydrogen injection

Autori: Laera, D., Agostinelli, P. W., Selle, L., Caz res, Q., Oztarlik, G., Schuller, T., Gicquel, L., & Poinsot
Pubblicato in: Proceedings of the Combustion Institute, 2020, ISSN 1540-7489
Editore: Combustion Institute

Impact of wall heat transfer in Large Eddy Simulation of flame dynamics in a swirled combustion chamber (si apre in una nuova finestra)

Autori: P.W.Agostinelli D.Laera I.Boxx L.Gicquel T.Poinsotd
Pubblicato in: Combustion and Flame, 2021, ISSN 0010-2180
Editore: Elsevier BV
DOI: 10.1016/j.combustflame.2021.111728

Reducing Uncertainty in the Onset of Combustion Instabilities Using Dynamic Pressure Information and Bayesian Neural Networks (si apre in una nuova finestra)

Autori: Michael McCartney, Ushnish Sengupta, Matthew Juniper
Pubblicato in: Journal of Engineering for Gas Turbines and Power, 2021, ISSN 0742-4795
Editore: American Society of Mechanical Engineers
DOI: 10.1115/1.4052145

Comparison of Machine Learning Algorithms in the Interpolation and Extrapolation of Flame Describing Functions (si apre in una nuova finestra)

Autori: Michael McCartney, Matthias Haeringer, Wolfgang Polifke
Pubblicato in: Journal of Engineering for Gas Turbines and Power, Numero 142/6, 2020, ISSN 0742-4795
Editore: American Society of Mechanical Engineers
DOI: 10.1115/1.4045516

An Observer for the Electrically Heated Vertical Rijke Tube with Nonlinear Heat Release (si apre in una nuova finestra)

Autori: Nils Christian A. Wilhelmsen, Florent Di Meglio
Pubblicato in: IFAC-PapersOnLine, Numero 53/2, 2020, Pagina/e 4181-4188, ISSN 2405-8963
Editore: IFAC-PapersOnLine
DOI: 10.1016/j.ifacol.2020.12.2461

Early detection of thermoacoustic instabilities in a cryogenic rocket thrust chamber using combustion noise features and machine learning (si apre in una nuova finestra)

Autori: Günther Waxenegger-Wilfing, Ushnish Sengupta, Jan Martin, Wolfgang Armbruster, Justin Hardi, Matthew Juniper, Michael Oschwald
Pubblicato in: Chaos: An Interdisciplinary Journal of Nonlinear Science, Numero 31/6, 2021, Pagina/e 063128, ISSN 1054-1500
Editore: American Institute of Physics
DOI: 10.1063/5.0038817

Ensembling geophysical models with Bayesian Neural Networks

Autori: Ushnish Sengupta, Matt Amos, J. Scott Hosking, Carl Edward Rasmussen, Matthew Juniper, Paul J. Young
Pubblicato in: Advances in Neural Information Processing Systems (NeurIPS) 2020, 2020
Editore: Advances in Neural Information Processing Systems (NeurIPS) 2020

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile

Il mio fascicolo 0 0