Skip to main content
European Commission logo print header

Holistic Optical Metrology for Aero-Elastic Research

Ziel

HOMER is aiming at the development of non-intrusive experimental flow diagnostic and data assimilation methods to expand capabilities from the aerodynamic analysis to the investigations of fluid-structure-interactions (FSI) in wind tunnels and other test facilities. The objective of the project is to develop an unattained combined diagnostic approach with simultaneous optical measurements of fluid and structure. When this is achieved, the measurements can be treated invoking the relation between the balancing forces (inertia-, elastic- and aerodynamic forces) interacting (non-linearly) within the s.c. Collar Triangle (FI + FE + FA = 0).
The research focuses on the application and further development of time-resolved volumetric (4D) flow field measurements that enable determining the fluid flow pressure. 3D PIV and Lagrangian Particle Tracking (LPT) along with Digital Image Correlation (DIC) are tailored to determine the position and dynamics of fluid and surface motion and deformations. Pressure Sensitive Paint (PSP) methods will be employed simultaneously with DIC and PIV/LPT to obtain the surface pressure at transonic flow velocities together with the model deformation.
The project realizes experiments that support the validation needs of MDO tool developments, enhance the physical knowledge about Fluid-Structure-Interaction phenomena and range from the assessment of the method (turbulent flow over a deforming surface) to relevant problems in aeronautics (transonic buffeting) and flapping flight mechanics.

Aufforderung zur Vorschlagseinreichung

H2020-MG-2016-2017

Andere Projekte für diesen Aufruf anzeigen

Unterauftrag

H2020-MG-2017-Two-Stages

Koordinator

DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
Netto-EU-Beitrag
€ 1 037 267,50
Adresse
LINDER HOHE
51147 Koln
Deutschland

Auf der Karte ansehen

Region
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Aktivitätstyp
Research Organisations
Links
Gesamtkosten
€ 1 037 267,50

Beteiligte (8)