Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

New transversality techniques in holomorphic curve theories

Objectif

"In the study of symplectic and contact manifolds, a decisive role has been played by the theory of pseudoholomorphic curves, introduced by Gromov in 1985. One major drawback of this theory is the fundamental conflict between ""genericity"" and ""symmetry"", which for instance causes moduli spaces of holomorphic curves to be singular or have the wrong dimension whenever multiply covered curves are present. Most traditional solutions to this problem involve abstract perturbations of the Cauchy-Riemann equation, but recently there has been progress in tackling the transversality problem more directly, leading in particular to a proof of the ""super-rigidity"" conjecture on symplectic Calabi-Yau 6-manifolds. The overriding goal of the proposed project is to unravel the full implications of these new transversality techniques for problems in symplectic topology and neighboring fields. Examples of applications to be explored include: (1) Understanding the symplectic field theory of unit cotangent bundles for manifolds with negative or nonpositive curvature, with applications to the nearby Lagrangian conjecture and dynamical questions in Riemannian geometry; (2) Developing a comprehensive bifurcation theory for Reeb orbits and holomorphic curves in symplectic cobordisms, leading e.g. to a proof that planar contact structures are ""quasiflexible""; (3) Completing the analytical foundations of Hutchings's embedded contact homology (ECH), a 3-dimensional holomorphic curve theory with important applications to dynamics and symplectic embedding problems; (4) Developing new refinements of the Gromov-Witten invariants based on super-rigidity and bifurcation theory; (5) Defining higher-dimensional analogues of ECH; (6) Proving integrality relations in the setting of 6-dimensional symplectic cobordisms, analogous to the Gopakumar-Vafa formula for Calabi-Yau 3-folds."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2017-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

HUMBOLDT-UNIVERSITAET ZU BERLIN
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 624 500,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 624 500,00

Bénéficiaires (1)

Mon livret 0 0