Obiettivo
Over the past 5 years, deep learning has exercised a tremendous and transformational effect on the field of computer vision. However, deep neural networks (DNNs) can only realize their full potential when applied in an end-to-end manner, i.e. when every stage of the processing pipeline is differentiable with respect to the network’s parameters, such that all of those parameters can be optimized together. Such end-to-end learning solutions are still rare for computer vision problems, in particular for dynamic visual scene understanding tasks. Moreover, feed-forward processing, as done in most DNN-based vision approaches, is only a tiny fraction of what the human brain can do. Feedback processes, temporal information processing, and memory mechanisms form an important part of our human scene understanding capabilities. Those mechanisms are currently underexplored in computer vision.
The goal of this proposal is to remove this bottleneck and to design end-to-end deep learning approaches that can realize the full potential of DNNs for dynamic visual scene understanding. We will make use of the positive interactions and feedback processes between multiple vision modalities and combine them to work towards a common goal. In addition, we will impart deep learning approaches with a notion of what it means to move through a 3D world by incorporating temporal continuity constraints, as well as by developing novel deep associative and spatial memory mechanisms.
The results of this research will enable deep neural networks to reach significantly improved dynamic scene understanding capabilities compared to today’s methods. This will have an immediate positive effect for applications in need for such capabilities, most notably for mobile robotics and intelligent vehicles.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale visione computerizzata
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale apprendimento automatico apprendimento profondo
- ingegneria e tecnologia ingegneria elettrica, ingegneria elettronica, ingegneria informatica ingegneria elettronica robotica
- scienze naturali informatica e scienze dell'informazione scienza dei dati trattamento dei dati
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale intelligenza computazionale
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-COG - Consolidator Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2017-COG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
52062 Aachen
Germania
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.