Skip to main content
Eine offizielle Website der Europäischen UnionOffizielle Website der EU
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Interaction of squalene-based anti-cancer and neuroprotective drugs with cell membranes: in silico study

Ziel

Squalene is a natural lipid precursor, which plays a crucial role in the biosynthesis of sterols in the cells . Squalene is 100% biocompatible, not toxic and is able to enter into the cells easily. This makes it very promising for creating highly efficient drugs and drug delivery systems. The so-called squalenoylation technology is based on fusing hydrophobic squalenic acid
with the molecules of water-soluble drugs. Resulting conjugated molecules spontaneously self-assemble into nanoparticles, which deliver the drugs into the target cells efficiently. Currently anticancer (gemcitabine , doxorubicin ), antiviral (dideoxycytidine ) and neuroprotective (adenosine ) drugs were used in this technology with great success.
This project is devoted to revealing mechanisms of interaction of novel and highly promising squalene-based anti-cancer and neuroprotective drugs with cell membranes by means of in silico ccomputer simulations. The main goals of the project are the following:
1. To reveal how squalene-based drugs incorporate into the cell membranes, interact with membrane components and are released from the membranes on atomistic level of details.
2. To propose the ways of improving translocation of squalene-based drugs through the membranes in order to increase their therapeutic efficacy.
The practical impact of the project is improving translocation of squalene-based drugs through the membranes and making it selective, which is of great interest for therapeutic applications of existing drugs and for creation of new compounds with desirable properties.

Wissenschaftliches Gebiet

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.

Koordinator

UNIVERSITE DE FRANCHE-COMTE
Netto-EU-Beitrag
€ 173 076,00
Adresse
1 RUE CLAUDE GOUDIMEL
25000 Besancon
Frankreich

Auf der Karte ansehen

Region
Bourgogne-Franche-Comté Franche-Comté Doubs
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 173 076,00