Objective
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and a leading cause of cancer death worldwide. Inactivation of different tumor suppressors, whose cooperation forms tumor suppressor networks, has been linked to HCC development, but the genetic events involved in HCC are still poorly understood. Mammalian target of rapamycin (mTOR) signaling is essential for cell growth and metabolism, and its hyper-activation plays an important role in pathogenesis and prognosis of HCC. However, the relationship between mTOR signaling dysregulation and the tumor suppressor networks in HCC, and whether mTOR inhibition could be a therapeutic strategy in some types of HCC remain largely unknown. Here I propose to use a genome-wide CRISPR knockout library to screen potential tumor suppressors in implanted mouse HCC models. The mouse hepatocytes depleted of different mTOR pathway components, with differential mTOR activities, will be separately infected with the CRISPR knockout library and implanted into immunocompromised mice to induce tumor. The goal of the proposed project is to understand the role of mTOR signaling dysregulation in the tumor suppressor networks in HCC. The specific objectives are: 1) to understand the tumor suppressor networks in HCC with differential mTOR activities in a genome-wide scale, 2) to examine how mTOR dysregulation controls the landscape of tumor suppressors, and 3) to explore whether mTOR inhibition could be developed as a treatment for specific subclasses of HCC. Using a combination of state-of-the-art CRISPR screening, molecular and cell biology, mouse models, next-generation sequencing, and bioinformatics tools, this project will link the mTOR signaling to tumor suppressor networks. This study will also unravel fundamental mechanisms underlying liver cancer development and contribute to potential targeted therapy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences clinical medicine oncology liver cancer
- natural sciences biological sciences cell biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4051 Basel
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.