Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

breaking frontiers for the utilisation of ROBust BIopolymer NanocompoSite materials through flow-induced and nanofiller-assisted tailoring of biomimetic structure and morphology

Ziel

This project aims to unlock the potential of natural biopolymers such as chitosan and protein which have been increasingly appreciated for not only their renewability (vs petroleum-derived polymers) but also their unique properties for various applications. However, enormous challenges exist to process biopolymers, to disperse nanoparticles in biopolymer matrices, and to achieve desired properties. This research specifically focuses on creating low-cost green biopolymer-graphene nanocomposites with tailored structure and properties via an innovative highly-efficient continuous engineering process. The core objective is to understand the fundamental physicochemical and rheological interactions between biopolymers and graphene with the smart use of novel additives/plasticisers, for precisely controlling composite structural evolution during melt processing. Initially, this will rely on the design of graphene and additives/plasticisers for the biopolymers, and then melt processing and plasticisation of biopolymer-based materials to realise specially oriented distribution of graphene on the nanoscale. Consequently, the interrelationships between processing conditions (affecting the interactions) and material properties (e.g. mechanical, electroconductivity) will be established. The understanding from this project is critical to engineering various biopolymer materials with tailored structures and properties for high-value application areas (e.g. biomedical, environmental). The advancement of knowledge will have a ground-breaking impact on the plastics industry by providing truly high-performance “green” polymer options in major new technology areas that traditional plastics cannot service. Via research and innovation, this multidisciplinary project will enable substantial transfer of knowledge and skills between both parties and provide the Experienced Researcher with widened competencies for research independence and maturity, relevant to the Horizon 2020 Work Program.

Koordinator

UNIVERSITY OF WARWICK
Netto-EU-Beitrag
€ 195 454,80
Adresse
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
Vereinigtes Königreich

Auf der Karte ansehen

Region
West Midlands (England) West Midlands Coventry
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 195 454,80