Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

The Dynamic Composition of the Protein Chaperone Network: Unraveling Human Protein Disaggregation via NMR Spectroscopy

Description du projet

Attaque des agrégats de protéines par les chaperons

Le repliement des protéines est primordial pour leur bon fonctionnement et le processus est aidé par d’autres protéines appelées chaperons moléculaires. De nouvelles preuves laissent penser que les chaperons décomposent également les agrégats de protéines observés au cours de la neurodégénérescence dans les maladies d’Alzheimer, de Parkinson et de Huntington. Cependant, la manière dont ces chaperons remplissent cette fonction de désagrégation n’est toujours pas clairement établie. Le projet NMR-DisAgg, financé par l’UE, vise à étudier les mécanismes des interactions entre chaperons, en surmontant les difficultés liées à la nature dynamique et éphémère de ces rencontres. La délimitation de la réaction de désagrégation permettra de mieux comprendre le processus de dégénérescence et d’identifier de nouvelles cibles thérapeutiques.

Objectif

Molecular chaperones are a diverse group of proteins critical to maintaining cellular homeostasis. Aside from protein refolding, it has recently been discovered that certain combinations of human chaperones can break apart toxic protein aggregates and even amyloids that have been linked to a host of neurodegenerative diseases. The first chaperones in this disaggregation reaction that are responsible for recognizing and performing initial remodeling of aggregates, are members of the Hsp40 (DnaJ) and small heat shock protein (sHSP) families. Very little, though, is known regarding how these chaperones perform their functions, and characterization of sHsp- and DnaJ-substrate complexes by most structural techniques has proven extremely challenging, as most chaperones are dynamic in nature and typically operate through a series of transient interactions with both their clients and other chaperones.
The advanced NMR techniques used in our lab, however, are ideally suited for the study of these exact types of dynamic systems, and include recently developed experiments (CEST, CPMG) that allow us to monitor the transient and low populated protein states typical of chaperone-chaperone and chaperone-client interactions, as well as to study the structure of these potentially very large protein complexes (methyl-TROSY).
By exploiting these NMR methodologies and additional, novel labeling schemes, we will characterize, for the first time, the recognition and substrate remodeling performed by the many members of the DnaJ and sHsp chaperone families on their clients. We will then take these approaches one step further and develop real time NMR experiments to observe the client remodeling performed over the course of the disaggregation reaction itself.
By combining advanced NMR with biophysical and functional assays, we ultimately aim to identify the specific sets of chaperones that, with the Hsp70 system, protect our cells by dissolving disease-linked aggregates and amyloid fibers.

Régime de financement

ERC-STG - Starting Grant

Institution d’accueil

WEIZMANN INSTITUTE OF SCIENCE
Contribution nette de l'UE
€ 1 499 956,00
Adresse
HERZL STREET 234
7610001 Rehovot
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 499 956,00

Bénéficiaires (1)