Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Discrete harmonic analysis for computer science

Obiettivo

Boolean function analysis is a topic of research at the heart of theoretical computer science. It studies functions on n input bits (for example, functions computed by Boolean circuits) from a spectral perspective, by treating them as real-valued functions on the group Z_2^n, and using techniques from Fourier and functional analysis. Boolean function analysis has been applied to a wide variety of areas within theoretical computer science, including hardness of approximation, learning theory, coding theory, and quantum complexity theory.

Despite its immense usefulness, Boolean function analysis has limited scope, since it is only appropriate for studying functions on {0,1}^n (a domain known as the Boolean hypercube). Discrete harmonic analysis is the study of functions on domains possessing richer algebraic structure such as the symmetric group (the group of all permutations), using techniques from representation theory and Sperner theory. The considerable success of Boolean function analysis suggests that discrete harmonic analysis could likewise play a central role in theoretical computer science.

The goal of this proposal is to systematically develop discrete harmonic analysis on a broad variety of domains, with an eye toward applications in several areas of theoretical computer science. We will generalize classical results of Boolean function analysis beyond the Boolean hypercube, to domains such as finite groups, association schemes (a generalization of finite groups), the quantum analog of the Boolean hypercube, and high-dimensional expanders (high-dimensional analogs of expander graphs). Potential applications include a quantum PCP theorem and two outstanding open questions in hardness of approximation: the Unique Games Conjecture and the Sliding Scale Conjecture. Beyond these concrete applications, we expect that the fundamental results we prove will have many other applications that are hard to predict in advance.

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-STG - Starting Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2018-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 473 750,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 473 750,00

Beneficiari (1)

Il mio fascicolo 0 0