Descrizione del progetto
I metodi matematici riducono la complessità e svelano la rappresentazione degli oggetti nel cervello
Una domanda centrale delle scienze cognitive è in che modo gli oggetti vengono rappresentati sul piano cognitivo e neurale. Uno dei problemi principali sta nel paradosso tra la nostra abilità nel riconoscere gli oggetti e l’enorme quantità di informazioni che abbiamo su ciascun oggetto. Una soluzione sta nel capire come sono organizzate le rappresentazioni neurali e nel supporre che i principi che vengono normalmente applicati ai dati sensoriali siano applicabili anche alle informazioni ad alto livello sugli oggetti. Il progetto ContentMAP, finanziato dall’UE, sta usando tecniche sperimentali e teoriche per ridurre gli schemi cognitivi e neurali ad alta dimensione legati agli oggetti, trasformandoli in rappresentazioni a bassa dimensione sulla superficie corticale. Il modello di codifica usato dal gruppo responsabile del progetto dovrebbe riuscire a prevedere l’«impronta» neurale di ciascun oggetto e a descrivere come gli oggetti sono rappresentati nel cervello.
Obiettivo
Our ability to recognize an object amongst many others is one of the most important features of the human mind. However, object recognition requires tremendous computational effort, as we need to solve a complex and recursive environment with ease and proficiency. This challenging feat is dependent on the implementation of an effective organization of knowledge in the brain. In ContentMAP I will put forth a novel understanding of how object knowledge is organized in the brain, by proposing that this knowledge is topographically laid out in the cortical surface according to object-related dimensions that code for different types of representational content – I will call this contentotopic mapping. To study this fine-grain topography, I will use a combination of fMRI, behavioral, and neuromodulation approaches. I will first obtain patterns of neural and cognitive similarity between objects, and from these extract object-related dimensions using a dimensionality reduction technique. I will then parametrically manipulate these dimensions with an innovative use of a visual field mapping technique, and test how functional selectivity changes across the cortical surface according to an object’s score on a target dimension. Moreover, I will test the tuning function of these contentotopic maps. Finally, to mirror the complexity of implementing a high-dimensional manifold onto a 2D cortical sheet, I will aggregate the topographies for the different dimensions into a composite map, and develop an encoding model to predict neural signatures for each object. To sum up, ContentMAP will have a dramatic impact in the cognitive sciences by describing how the stuff of concepts is represented in the brain, and providing a complete description of how fine-grain representations and functional selectivity within high-level complex processes are topographically implemented.
Campo scientifico
Not validated
Not validated
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-STG - Starting GrantIstituzione ospitante
3004-531 Coimbra
Portogallo