Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Stochastic Processes on Random Surfaces

Objetivo

In the last several decades, two canonical theories of random surfaces have emerged. The first, so-called Liouville quantum gravity (LQG), has its roots in conformal field theory and string theory from the 1980s and 1990s. The second, so-called random planar maps (RPM), has its roots in combinatorics from the 1960s. There has been immense progress in recent years in making rigorous sense of LQG, in the study of the large-scale behavior of RPM, and developing connections between them as well as with other mathematical objects such as the Schramm-Loewner evolution (SLE).

The purpose of this project is to study stochastic processes on LQG and RPM.

The first part of the proposed research is focused on developing a theory of growth processes on LQG, the so-called quantum Loewner evolution (QLE). QLE, introduced in joint work with Sheffield, is a family of processes which conjecturally describe the scaling limits of discrete growth processes such as diffusion limited aggregation (DLA), the Eden model, and the dielectric breakdown model (DBM) on LQG. QLE has proved to be a powerful tool in the study of LQG and RPM and was used in joint work with Sheffield to unite LQG with gamma=sqrt(8/3) with the Brownian map, the metric space scaling limit of random planar maps. Nevertheless, the development of QLE is still in its infancy and many important problems remain to be solved.

It has long been conjectured that large RPM equipped with a statistical physics model, such as percolation or a uniform spanning tree, embedded into the plane in a conformal manner should be described by a form of LQG decorated by an SLE. The embedding problem is intimately connected to understanding random walk on a RPM, which has proved to be challenging. The second part of the proposal is aimed at developing new methods to settle long-standing questions about random walk on RPM, and ultimately the embedding problem for RPM.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-STG - Starting Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2018-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 489 406,00
Dirección
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Reino Unido

Ver en el mapa

Región
East of England East Anglia Cambridgeshire CC
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 489 406,00

Beneficiarios (1)

Mi folleto 0 0