Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Stochastic Processes on Random Surfaces

Ziel

In the last several decades, two canonical theories of random surfaces have emerged. The first, so-called Liouville quantum gravity (LQG), has its roots in conformal field theory and string theory from the 1980s and 1990s. The second, so-called random planar maps (RPM), has its roots in combinatorics from the 1960s. There has been immense progress in recent years in making rigorous sense of LQG, in the study of the large-scale behavior of RPM, and developing connections between them as well as with other mathematical objects such as the Schramm-Loewner evolution (SLE).

The purpose of this project is to study stochastic processes on LQG and RPM.

The first part of the proposed research is focused on developing a theory of growth processes on LQG, the so-called quantum Loewner evolution (QLE). QLE, introduced in joint work with Sheffield, is a family of processes which conjecturally describe the scaling limits of discrete growth processes such as diffusion limited aggregation (DLA), the Eden model, and the dielectric breakdown model (DBM) on LQG. QLE has proved to be a powerful tool in the study of LQG and RPM and was used in joint work with Sheffield to unite LQG with gamma=sqrt(8/3) with the Brownian map, the metric space scaling limit of random planar maps. Nevertheless, the development of QLE is still in its infancy and many important problems remain to be solved.

It has long been conjectured that large RPM equipped with a statistical physics model, such as percolation or a uniform spanning tree, embedded into the plane in a conformal manner should be described by a form of LQG decorated by an SLE. The embedding problem is intimately connected to understanding random walk on a RPM, which has proved to be challenging. The second part of the proposal is aimed at developing new methods to settle long-standing questions about random walk on RPM, and ultimately the embedding problem for RPM.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-STG - Starting Grant

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) ERC-2018-STG

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Gastgebende Einrichtung

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 1 489 406,00
Adresse
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Vereinigtes Königreich

Auf der Karte ansehen

Region
East of England East Anglia Cambridgeshire CC
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 1 489 406,00

Begünstigte (1)

Mein Booklet 0 0